Description Usage Arguments Details Author(s) References Examples
Computes the conditional survival probability P(T > y|Z = z)
1 2 |
time |
The survival time of the process. |
status |
Censoring indicator of the total time of the process; 0 if the total time is censored and 1 otherwise. |
covariate |
Covariate values for obtaining estimates for the conditional probabilities. |
delta |
Censoring indicator of the covariate. |
x |
The first time (or covariate value) for obtaining estimates for the conditional probabilities. If missing, 0 will be used. |
y |
The total time for obtaining estimates for the conditional probabilities. |
kernel |
A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used. |
bw |
A single numeric value to compute a kernel density bandwidth. |
lower.tail |
logical; if FALSE (default), probabilities are P(T > y|Z = z) otherwise, P(T <= y|Z = z). |
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine"
Gustavo Soutinho and Luis Meira-Machado
R. Beran. Nonparametric regression with randomly censored survival data. Technical report, University of California, Berkeley, 1981.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | b3state2 <- multidf(time1=bladder4state$y1, event1=bladder4state$d1,
time=bladder4state$y1+bladder4state$y2,
status=bladder4state$d2, size=bladder4state$size)
head(b3state2[[1]])
##P(T>y|size=3)
library(KernSmooth)
obj0 <- b3state2[[1]]
h <- dpik(obj0$size)
Beran(time = obj0$time, status = obj0$status, covariate =obj0$size, x = 3,
y = 50, bw = h)
##P(T<=y|size=3)
Beran(time = obj0$time, status = obj0$status, covariate =obj0$size, x = 3,
y = 50, bw = h,
lower.tail = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.