Description Usage Arguments Details Value Functions Examples
View source: R/error_measures.R
error_measures
returns the forecast errors for the following error
measures: MSE, MAD, sMAPE, MASE, and OWA.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | error_measures(
forecasts,
outsample,
insample = NULL,
ts.frequency,
forecast.horizon,
alpha.level = 0.05,
error.measure = NULL
)
measure_MSE(forecasts, outsample)
measure_MAD(forecasts, outsample)
measure_SMAPE(forecasts, outsample)
measure_MASE(forecasts, outsample, insample)
measure_OWA(
forecasts,
outsample,
insample,
forecast.horizon,
alpha.level,
ts.frequency
)
|
forecasts |
A numeric vector with the point forecasts. |
outsample |
A numeric vector with the test data set. |
insample |
A numeric vector with the training data set. |
ts.frequency |
The frequency of a ts object. |
forecast.horizon |
A numeric value with the length of the forecast lead. |
alpha.level |
A numeric value with the alpha level to be used in the test to detect seasonality. Default is 0.05. |
error.measure |
Error measure to be used when calculating the in-sample prediction errors. |
These can be 'mse', 'mad', 'smape', 'mase', and 'owa' (see Details).
A 5-object list with the numeric values of the forecast error for each one of the error measures.
measure_MSE
: MSE - Mean Absolute Deviation
measure_MAD
: MAD - Mean Absolute Deviation
measure_SMAPE
: SMAPE - Symmetric Mean Absolute Percentage Error
measure_MASE
: MASE - Mean Absolute Scaled Error
measure_OWA
: OWA - Overall Weighted Average
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # Using NAIVE2:
# Observations until the 100th will be in the insample (train) data set.
tmp.cut.at <- 100
tmp.forecast.horizon <- length(datasets::AirPassengers) - tmp.cut.at
tmp.orig.start <- stats::tsp(datasets::AirPassengers)[1]
tmp.orig.end <- stats::tsp(datasets::AirPassengers)[2]
tmp.orig.freq <- stats::tsp(datasets::AirPassengers)[3]
# Get train data (insample)
tmp.train.start <- tmp.orig.start
tmp.train.end <- tmp.orig.start + ((tmp.cut.at - 1) * 1 / tmp.orig.freq)
tmp.train.data <- stats::window(
x = datasets::AirPassengers,
start = tmp.train.start,
end = tmp.train.end,
frequency = tmp.orig.freq
)
# Get test data (outsample)
tmp.test.start <- tmp.orig.start + (tmp.cut.at * 1 / tmp.orig.freq)
tmp.test.end <- tmp.orig.end
tmp.test.data <- stats::window(
x = datasets::AirPassengers,
start = tmp.test.start,
end = tmp.test.end,
frequency = tmp.orig.freq
)
# Get Forecasts
tmp.forecasts <- gears::forecast_naive2(
ts.data = tmp.train.data,
ts.frequency = tmp.orig.freq,
forecast.horizon = tmp.forecast.horizon,
alpha.level = 0.05
)
# Get error measures for the forecast
error_measures(
forecasts = tmp.forecasts,
outsample = tmp.test.data,
insample = tmp.train.data,
ts.frequency = tmp.orig.freq,
forecast.horizon = tmp.forecast.horizon,
alpha.level = 0.05,
error.measure = "mse"
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.