Description Usage Arguments Value See Also Examples
The auc
function takes an S3
object generated by
evalmod
and retrieves a data frame with the Area Under
the Curve (AUC) scores of ROC and Precision-Recall curves.
1 2 3 4 |
curves |
An
See the Value section of |
The auc
function returns a data frame with AUC scores.
evalmod
for generating S3
objects with
performance evaluation measures. pauc
for retrieving a dataset
of pAUCs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | ##################################################
### Single model & single test dataset
###
## Load a dataset with 10 positives and 10 negatives
data(P10N10)
## Generate an sscurve object that contains ROC and Precision-Recall curves
sscurves <- evalmod(scores = P10N10$scores, labels = P10N10$labels)
## Shows AUCs
auc(sscurves)
##################################################
### Multiple models & single test dataset
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(1, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]])
## Generate an mscurve object that contains ROC and Precision-Recall curves
mscurves <- evalmod(mdat)
## Shows AUCs
auc(mscurves)
##################################################
### Single model & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(4, 100, 100, "good_er")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]])
## Generate an smcurve object that contains ROC and Precision-Recall curves
smcurves <- evalmod(mdat, raw_curves = TRUE)
## Get AUCs
sm_aucs <- auc(smcurves)
## Shows AUCs
sm_aucs
## Get AUCs of Precision-Recall
sm_aucs_prc <- subset(sm_aucs, curvetypes == "PRC")
## Shows AUCs
sm_aucs_prc
##################################################
### Multiple models & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(4, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]])
## Generate an mscurve object that contains ROC and Precision-Recall curves
mmcurves <- evalmod(mdat, raw_curves = TRUE)
## Get AUCs
mm_aucs <- auc(mmcurves)
## Shows AUCs
mm_aucs
## Get AUCs of Precision-Recall
mm_aucs_prc <- subset(mm_aucs, curvetypes == "PRC")
## Shows AUCs
mm_aucs_prc
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.