| meta_stan | R Documentation | 
'meta_stan' fits a meta-analysis model using Stan.
meta_stan( data = NULL, likelihood = NULL, mu_prior = c(0, 10), theta_prior = NULL, tau_prior = 0.5, tau_prior_dist = "half-normal", beta_prior = c(0, 100), delta = NULL, param = "Smith", re = TRUE, ncp = TRUE, interval.type = "shortest", mreg = FALSE, cov = NULL, chains = 4, iter = 2000, warmup = 1000, adapt_delta = 0.95, ... )
| data | Data frame created by 'create_MetaStan_dat' | 
| likelihood | A string specifying the likelihood function defining the statistical model. Options include 'normal', 'binomial', and 'Poisson'. | 
| mu_prior | A numerical vector specifying the parameter of the normal prior density for baseline risks, first value is parameter for mean, second is for variance. Default is c(0, 10). | 
| theta_prior | A numerical vector specifying the parameter of the normal prior density for treatment effect estimate, first value is parameter for mean, second is for variance. Default is NULL. | 
| tau_prior | A numerical value specifying the standard dev. of the prior density for heterogeneity stdev. Default is 0.5. | 
| tau_prior_dist | A string specifying the prior density for the heterogeneity standard deviation, option is 'half-normal' for half-normal prior, 'uniform' for uniform prior, 'half-cauchy' for half-cauchy prior. | 
| beta_prior | A numerical vector specifying the parameter of the normal prior density for beta coefficients in a meta-regression model, first value is parameter for mean, second is for variance. Default is c(0, 100). | 
| delta | A numerical value specifying the upper bound of the a priori interval for treatment effect on odds ratio scale (Guenhan et al (2020)). This is used to calculate a normal weakly informative prior. for theta. Thus when this argument is specified, 'theta' should be left empty. Default is NULL. | 
| param | Paramteriztaion used. The default is the 'Smith' model suggested by Smith et al (1995). The alternative is 'Higgins' is the common meta-analysis model (Simmonds and Higgins, 2014). | 
| re | A string specifying whether random-effects are included to the model. When 'FALSE', the model corresponds to a fixed-effects model. The default is 'TRUE'. | 
| ncp | A string specifying whether to use a non-centered parametrization. The default is 'TRUE'. | 
| interval.type | A string specifying the type of interval estimate. Options include shortest credible interval 'shortest' (default) and qui-tailed credible interval 'central'. | 
| mreg | A string specifying whether to fit a meta-regression model. The default is 'FALSE'. | 
| cov | A numeric vector or matrix specifying trial-level covariates (in each row). This is needed when 'mreg = TRUE'. | 
| chains | A positive integer specifying the number of Markov chains. The default is 4. | 
| iter | A positive integer specifying the number of iterations for each chain (including warmup). The default is 2000. | 
| warmup | A positive integer specifying the number of warmup (aka burnin) iterations per chain. The default is 1000. | 
| adapt_delta | A numerical value specifying the target average proposal acceptance probability for adaptation. See Stan manual for details. Default is 0.95. In general you should not need to change adapt_delta unless you see a warning message about divergent transitions, in which case you can increase adapt_delta from the default to a value closer to 1 (e.g. from 0.95 to 0.99, or from 0.99 to 0.999, etc). | 
| ... | Further arguments passed to or from other methods. | 
an object of class 'MetaStan'.
Guenhan BK, Roever C, Friede T. MetaStan: An R package for meta-analysis and model-based meta-analysis using Stan. In preparation.
Guenhan BK, Roever C, Friede T. Random-effects meta-analysis of few studies involving rare events Resarch Synthesis Methods 2020; doi:10.1002/jrsm.1370.
Jackson D, Law M, Stijnen T, Viechtbauer W, White IR. A comparison of 7 random-effects models for meta-analyses that estimate the summary odds ratio. Stat Med 2018;37:1059–1085.
Kuss O. Statistical methods for meta-analyses including information from studies without any events-add nothing to nothing and succeed nevertheless, Stat Med, 2015; 4; 1097–1116, doi: 10.1002/sim.6383.
## Not run: 
## TB dataset
data('dat.Berkey1995', package = "MetaStan")
## Fitting a Binomial-Normal Hierarchical model using WIP priors
dat_MetaStan <- create_MetaStan_dat(dat = dat.Berkey1995,
                                    armVars = c(responders = "r", sampleSize = "n"))
 ma.stan  <- meta_stan(data = dat_MetaStan,
                           likelihood = "binomial",
                           mu_prior = c(0, 10),
                           theta_prior = c(0, 100),
                           tau_prior = 0.5,
                           tau_prior_dist = "half-normal")
print(ma.stan)
forest_plot(ma.stan)
meta.reg.stan  <- meta_stan(data = dat_MetaStan,
                           likelihood = "binomial",
                           mu_prior = c(0, 10),
                           theta_prior = c(0, 100),
                           tau_prior = 0.5,
                           tau_prior_dist = "half-normal",
                           mreg = TRUE,
                           cov = dat.Berkey1995$Latitude)
print(meta.reg.stan)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.