View source: R/colwise-mutate.R
summarise_all | R Documentation |
Scoped verbs (_if
, _at
, _all
) have been superseded by the use of
pick()
or across()
in an existing verb. See vignette("colwise")
for
details.
The scoped variants of summarise()
make it easy to apply the same
transformation to multiple variables.
There are three variants.
summarise_all()
affects every variable
summarise_at()
affects variables selected with a character vector or
vars()
summarise_if()
affects variables selected with a predicate function
summarise_all(.tbl, .funs, ...)
summarise_if(.tbl, .predicate, .funs, ...)
summarise_at(.tbl, .vars, .funs, ..., .cols = NULL)
summarize_all(.tbl, .funs, ...)
summarize_if(.tbl, .predicate, .funs, ...)
summarize_at(.tbl, .vars, .funs, ..., .cols = NULL)
.tbl |
A |
.funs |
A function |
... |
Additional arguments for the function calls in
|
.predicate |
A predicate function to be applied to the columns
or a logical vector. The variables for which |
.vars |
A list of columns generated by |
.cols |
This argument has been renamed to |
A data frame. By default, the newly created columns have the shortest names needed to uniquely identify the output. To force inclusion of a name, even when not needed, name the input (see examples for details).
If applied on a grouped tibble, these operations are not applied
to the grouping variables. The behaviour depends on whether the
selection is implicit (all
and if
selections) or
explicit (at
selections).
Grouping variables covered by explicit selections in
summarise_at()
are always an error. Add -group_cols()
to the
vars()
selection to avoid this:
data %>% summarise_at(vars(-group_cols(), ...), myoperation)
Or remove group_vars()
from the character vector of column names:
nms <- setdiff(nms, group_vars(data)) data %>% summarise_at(nms, myoperation)
Grouping variables covered by implicit selections are silently
ignored by summarise_all()
and summarise_if()
.
The names of the new columns are derived from the names of the input variables and the names of the functions.
if there is only one unnamed function (i.e. if .funs
is an unnamed list
of length one),
the names of the input variables are used to name the new columns;
for _at
functions, if there is only one unnamed variable (i.e.,
if .vars
is of the form vars(a_single_column)
) and .funs
has length
greater than one,
the names of the functions are used to name the new columns;
otherwise, the new names are created by
concatenating the names of the input variables and the names of the
functions, separated with an underscore "_"
.
The .funs
argument can be a named or unnamed list.
If a function is unnamed and the name cannot be derived automatically,
a name of the form "fn#" is used.
Similarly, vars()
accepts named and unnamed arguments.
If a variable in .vars
is named, a new column by that name will be created.
Name collisions in the new columns are disambiguated using a unique suffix.
The other scoped verbs, vars()
# The _at() variants directly support strings:
starwars %>%
summarise_at(c("height", "mass"), mean, na.rm = TRUE)
# ->
starwars %>% summarise(across(c("height", "mass"), ~ mean(.x, na.rm = TRUE)))
# You can also supply selection helpers to _at() functions but you have
# to quote them with vars():
starwars %>%
summarise_at(vars(height:mass), mean, na.rm = TRUE)
# ->
starwars %>%
summarise(across(height:mass, ~ mean(.x, na.rm = TRUE)))
# The _if() variants apply a predicate function (a function that
# returns TRUE or FALSE) to determine the relevant subset of
# columns. Here we apply mean() to the numeric columns:
starwars %>%
summarise_if(is.numeric, mean, na.rm = TRUE)
starwars %>%
summarise(across(where(is.numeric), ~ mean(.x, na.rm = TRUE)))
by_species <- iris %>%
group_by(Species)
# If you want to apply multiple transformations, pass a list of
# functions. When there are multiple functions, they create new
# variables instead of modifying the variables in place:
by_species %>%
summarise_all(list(min, max))
# ->
by_species %>%
summarise(across(everything(), list(min = min, max = max)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.