knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
# Install package from GitHub # devtools::install_github("haisx/basiclm") # Load the package library(basiclm)
There is one linear_model() function in the package. It presents some important statistics of linear regression model.
The input variables should all be numeric variables.
linear_modelformula: The formula of interests. It should follow the format of y~x. You can add more than one explanatory variables with different form like y~x+z+I(z^2).
e.g.. linear_model(y~x)
data: The name of the data needed to conduct the linear regression model.
e.g. linear_model(y~x, data = mydata)
digit: The digits you want to keep in the output. The p-value would not be affected by digit. The default digit option is digit = 3.
e.g. linear_model(y~x, data = mydata, digit = 8)
detailed: The detailed means a detailed output of the linear regression model. The detailed table includes more information about coefficients and model like Std Error, t value of the coefficients, R-Squared of the model, and so on. The default detail = FALSE.
e.g. linear_model(y~x, data = mydata, digit = 8, detailed = TRUE)
linear_model() with VectorsWe can create our own response and explanatory variables and put them into the function.
y = c(1:10) x = c(2:5, 11:6) linear_model(y~x)
we can get what we called in function and the coefficients of the linear regression model directly.
linear_model() with DatasetHere we use iris data as a simple example.
head(iris) # We will use the numeric variables in iris dataset linear_model(Petal.Length~Sepal.Width ,data = iris) # Keep more digits of results linear_model(Petal.Length~Sepal.Width ,data = iris, digit = 8)
detailed Optionlinear_model(Petal.Length~Sepal.Width ,data=iris, detailed = TRUE)
linear_model() vs. lm()set.seed(222) testx = runif(5000000, 1, 10000) testy = runif(5000000, 1, 10000) system.time(lm(testy~testx)) system.time(linear_model(testy~testx)) set.seed(223) testx = runif(5000000, 1, 10000) testy = runif(5000000, 1, 10000) testz = runif(5000000, 1, 10000) system.time(lm(testz~ testx + testy)) system.time(linear_model(testz~ testx + testy))
linear_model() vs. lm()#iris sample data linear_model(Petal.Length~Sepal.Width, data=iris, digit = 8, detailed = T) summary(lm(Petal.Length~Sepal.Width, data=iris)) # Other random generated data set.seed(2212) testx = c(1:1000) testy = runif(1000, 1, 10000) linear_model(testy~testx, digit = 5, detailed = T) summary(lm(testy~testx))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.