Description Usage Arguments Value
This function provides importance scores for variables (including the knockoffs) in order to compute statistics. The variable importance is measured by Lasso coefficient.
1 | lasso_coef_diff(Xaug, y, family = Gaussian())
|
Xaug |
augmented design matrix combining original predictors and knockoff variables |
y |
response vector, or a survival object with two columns |
family |
Binomial(), Binomial(link = <e2><80><9c>logit<e2><80><9d>, type=<e2><80><9d>glm<e2><80><9d>), Gaussian(), Poisson(), CoxPH(), Cindex(), GammaReg(), NBinomial(), Weibull(), Loglog(), Lognormal(), etc. See mboost documentation for details. |
2p vector containing varible importance for both orginal variables and knockoff variables
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.