View source: R/model_selection.R
model_selection | R Documentation |
do linear model from data and y, and use F-value selection to choose model return. can select forward or backward run this function, alpha value decide p-value select accuracy. and if model have Multicollinearity problem, function will warning it.
fselect(y, data, alpha_in, alpha_out, mode)
y |
y of linear model, a strain variable |
data |
all x of linear model, independent variable |
alpha_in |
new variable p-value should smaller than alpha in, it can be select into model |
alpha_out |
if p-value bigger than alpha out, the variable will be dropout to model |
mode |
can choose forward or backward stepwise selection |
y <- iris[,1]
x <- iris[,2:4]
fit <- fselect(y=y, data=x, alpha_in=0.01, alpha_out=0.05, mode="backward")
summary(fit)
y <- MASS::Boston[,14]
x <- MASS::Boston[,-14]
fit <- fselect(y=y, data=x, alpha_in=0.01, alpha_out=0.05, mode="forward")
summary(fit)
data <- as.data.frame(matrix(rnorm(1000), ncol=10))
data[,2] <- data[,1]*5+rnorm(100)
# beta <- c(beta_0, beta_1, ..., beta_n)
beta <- c(4,2,3,0,1,7,0,5)
# use function set y
y <- yget(data, beta)
mult_fit <- fselect(y, data, alpha_in=0.001, alpha_out=0.005)
summary(mult_fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.