View source: R/kepner_robinson.R
kepner_robinson_test_internal | R Documentation |
This function calculates the Kepner-Robinsin test under the null hypothesis H0F: F_1 = ... F_k.
kepner_robinson_test_internal(
data,
time,
subject,
distribution,
na.rm,
formula = NULL,
...
)
data |
numeric vector containing the data |
time |
factor vector containing time points |
subject |
factor vector containing subjects |
distribution |
specified distribution, either Chisq or F |
na.rm |
a logical value indicating if NA values should be removed |
formula |
formula object |
... |
further arguments are ignored |
Returns a data.frame with the results
Kepner, J. L., & Robinson, D. H. (1988). Nonparametric methods for detecting treatment effects in repeated-measures designs. Journal of the American Statistical Association, 83(402), 456-461.
# create some artificial data with 20 subjects measured at two time points
data <- rnorm(40)
time <- rep(c(1,2),20)
subject <- gl(20,2)
df <- data.frame(data=data,time=time,subject=subject)
kepner_robinson_test(data,time,subject)
kepner_robinson_test(data~time,data=df,subject="subject")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.