| GCSscore | R Documentation |
The main function used to call and run the GCS-score algorithm.
GCSscore(celFile1 = NULL, celFile2 = NULL, celTable = NULL,celTab.names = FALSE, typeFilter = 0, method = 1, rm.outmask = FALSE, SF1 = NULL, SF2 = NULL, fileout = FALSE, gzip = FALSE, verbose = FALSE)
celFile1 |
If a one comparison run is desired, enter the filename and path to the 1st Affymetrix CEL file |
celFile2 |
If a one comparison run is desired, enter the filename and path to the 2nd Affymetrix CEL file |
celTable |
If a batch run is desired, enter the filename and path to the CSV file containing the batch information |
celTab.names |
If set to |
typeFilter |
If set to |
method |
This determines the method used to group and tally the probes_ids when calculating GCS-scores. For Whole Transcriptome arrays, for gene-level (transcript_cluster_id-based) analysis, set |
rm.outmask |
If set to |
SF1 |
Input a pre-determined Scaling Factor (SF) for the 1st CEL file |
SF2 |
Input a pre-determined Scaling Factor (SF) for the 2nd CEL file |
fileout |
Determines if the resulting GCS-score output is written to disk in a CSV format following the completion of the function. |
gzip |
If set to |
verbose |
If set to |
The input accepts individual CEL files or reads in a CSV file for batch runs. The user also inputs parameters to determine the method used by the GCS-score algorithm to group and tally the individual probes on a given array.
An ExpressionSet object with GCS-score values for the probe groupings (determined by the method argument) and the relevant annotation informtaion
if (length(list.files(path = ".", pattern = "*.CEL")) != 0){
######################## Single run example ###########################
# get the path to example CEL files provided with package:
celpath1 <- system.file("extdata/","MN_2_3.CEL", package = "GCSscore")
celpath2 <- system.file("extdata/","MN_4_1.CEL", package = "GCSscore")
# run GCSscore() function directly on the two .CEL files above:
GCSs.single <- GCSscore::GCSscore(celFile1 = celpath1, celFile2 = celpath2)
# convert GCSscore single-run from ExpressionSet to data.table:
GCSs.single.dt <-
data.table::as.data.table(cbind(GCSs.single@featureData@data,
GCSs.single@assayData[["exprs"]]))
# show all column names included in the output:
colnames(GCSs.single.dt)
# show simplified output of select columns and rows:
GCSs.single.dt[10000:10005,
c("transcriptclusterid","symbol",
"ref_id","Sscore")]
######################## batch run example ############################
# get the path to example batch (.csv) file provided with package:
celtab_path <- system.file("extdata",
"GCSs_batch_ex.csv",
package = "GCSscore")
# read in the .CSV file using fread():
celtab <- data.table::fread(celtab_path)
# view structure of 'celTable' input:
celtab
# add the path to the sample CEL files to the batch input:
# NOTE: this step is not necessary if the .CEL files
# are in the working directory:
path <- system.file("extdata", package = "GCSscore")
celtab$CelFile1 <- celtab[,paste(path,CelFile1,sep="/")]
celtab$CelFile2 <- celtab[,paste(path,CelFile2,sep="/")]
# run GCSscore function on the batch input:
GCSs.batch <- GCSscore::GCSscore(celTable = celtab, celTab.names = TRUE)
# convert GCS-score output from 'ExpressionSet' to 'data.table':
GCSs.batch.dt <-
data.table::as.data.table(cbind(GCSs.batch@featureData@data,
GCSs.batch@assayData[["exprs"]]))
# show all columns included in the output:
colnames(GCSs.batch.dt)
# show simplified output of GCSscore batch example:
GCSs.batch.dt[10000:10005,
c("transcriptclusterid","symbol",
"example01","example02","example03")]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.