Description Usage Arguments Details Value Author(s) References See Also Examples
Perform the learning process of the network with Batch algorithm.
1 | learnBatch( object , number.iter , max.rayon = 3 , min.rayon = 0 )
|
object |
a som object |
number.iter |
number of learning process' step. It won't have effect if |
max.rayon |
the maximum radius during learning process. |
min.rayon |
the minimum radii during learning process. |
Be carefull with number.iter
, it should be small.
alpha decrease linearly from max.alpha
to min.alpha
over number.iter
updates.
rayon decrease linearly from max.rayon
to min.rayon
over number.iter
updates.
a som object.
David Gohel
Kohonen, T. (1995). Self-Organizing Maps
som
learn
plot.som
summary.som
predict.som
biplot.som
getWeights
setWeights
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(MASS)
lcrabs <- log(crabs[, 4:8])
lcrabs.som <- som ( formula = ~ . , data = lcrabs
, neighborhood = "uniform"
, grid = grid ( xdim = 10 , ydim = 10 , type = "hexagonal" )
, weights.min = min (lcrabs), weights.max = max (lcrabs)
)
# train the network
lcrabs.som <- learnBatch( lcrabs.som , number.iter = 10 )
# plot energy function and print a summary
plot( lcrabs.som , "energy")
summary( lcrabs.som )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.