plot_pd | R Documentation |
Plot the partial dependence functions (i.e., marginal effects) for the predictors in a model.
plot_pd(pd)
pd |
Data frame containing the partial dependence effect as returned by
|
ggplot object showing the partial dependence effect in pd
.
## Not run:
data('mtpl_be')
features <- setdiff(names(mtpl_be), c('id', 'nclaims', 'expo', 'long', 'lat'))
set.seed(12345)
gbm_fit <- gbm::gbm(as.formula(paste('nclaims ~',
paste(features, collapse = ' + '))),
distribution = 'poisson',
data = mtpl_be,
n.trees = 50,
interaction.depth = 3,
shrinkage = 0.1)
gbm_fun <- function(object, newdata) mean(predict(object, newdata, n.trees = object$n.trees, type = 'response'))
gbm_fit %>% get_pd(var = 'ageph',
grid = 'ageph' %>% get_grid(data = mtpl_be),
data = mtpl_be,
subsample = 10000,
fun = gbm_fun) %>%
plot_pd
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.