gate_givens: Givens

Description Usage Arguments Details Value See Also

View source: R/Unitary_Gates.R

Description

a gate with matrix exp(-i angle_rads (Y⊗X - X⊗Y) / 2).

Usage

1
gate_givens(angle_rads)

Arguments

angle_rads

The rotation angle in radians.

Details

In numerical linear algebra Givens rotation is any linear transformation with matrix equal to the identity except for a 2x2 orthogonal submatrix [[cos(a), -sin(a)], [sin(a), cos(a)]] which performs a 2D rotation on a subspace spanned by two basis vectors. In quantum computational chemistry the term is used to refer to the two-qubit gate defined as givens(a) ≡ exp(-i a (Y⊗X - X⊗Y) / 2) with the matrix [[1, 0, 0, 0], [0, c, -s, 0], [0, s, c, 0], [0, 0, 0, 1]] where c = cos(a), s = sin(a). The matrix is a Givens rotation in the numerical linear algebra sense acting on the subspace spanned by the |01⟩ and |10⟩ states. The gate is also equivalent to the ISWAP conjugated by T^-1 ⊗ T.

Value

A phased iswap gate for the given rotation.

See Also

Other Unitary gates and operations: gate_Gate(), gate_ccnot_pow(), gate_ccnot(), gate_ccx_pow(), gate_ccx(), gate_ccz_pow(), gate_ccz(), gate_cnot_pow(), gate_cnot(), gate_controlled(), gate_cs_wap(), gate_cx_pow(), gate_cx(), gate_cz_pow(), gate_cz(), gate_eigen(), gate_fredkin(), gate_fsim(), gate_global_phase_operation(), gate_hpow(), gate_h(), gate_identity_each(), gate_identity(), gate_is_wap_pow(), gate_iswap(), gate_i(), gate_matrix(), gate_operation(), gate_phase_gradient(), gate_phased_is_wap_pow(), gate_phased_xz(), gate_quantum_fourier_transform(), gate_riswap(), gate_rx(), gate_ry(), gate_single_qubit(), gate_swap_pow(), gate_swap(), gate_s(), gate_tagged_opertaion(), gate_three_qubit_diagonal(), gate_three_qubit(), gate_toffoli(), gate_t(), gate_wait(), gate_x_pow(), gate_xx_pow(), gate_xx(), gate_x(), gate_y_pow(), gate_yy_pow(), gate_yy(), gate_y(), gate_z_pow(), gate_zz_pow(), gate_zz(), gate_z()


henry090/Cirq documentation built on June 13, 2020, 1:28 a.m.