Description Usage Arguments Details Value See Also
View source: R/Unitary_Gates.R
a gate with matrix exp(-i angle_rads (Y⊗X - X⊗Y) / 2).
1 | gate_givens(angle_rads)
|
angle_rads |
The rotation angle in radians. |
In numerical linear algebra Givens rotation is any linear transformation with matrix equal to the identity except for a 2x2 orthogonal submatrix [[cos(a), -sin(a)], [sin(a), cos(a)]] which performs a 2D rotation on a subspace spanned by two basis vectors. In quantum computational chemistry the term is used to refer to the two-qubit gate defined as givens(a) ≡ exp(-i a (Y⊗X - X⊗Y) / 2) with the matrix [[1, 0, 0, 0], [0, c, -s, 0], [0, s, c, 0], [0, 0, 0, 1]] where c = cos(a), s = sin(a). The matrix is a Givens rotation in the numerical linear algebra sense acting on the subspace spanned by the |01⟩ and |10⟩ states. The gate is also equivalent to the ISWAP conjugated by T^-1 ⊗ T.
A phased iswap gate for the given rotation.
Other Unitary gates and operations:
gate_Gate()
,
gate_ccnot_pow()
,
gate_ccnot()
,
gate_ccx_pow()
,
gate_ccx()
,
gate_ccz_pow()
,
gate_ccz()
,
gate_cnot_pow()
,
gate_cnot()
,
gate_controlled()
,
gate_cs_wap()
,
gate_cx_pow()
,
gate_cx()
,
gate_cz_pow()
,
gate_cz()
,
gate_eigen()
,
gate_fredkin()
,
gate_fsim()
,
gate_global_phase_operation()
,
gate_hpow()
,
gate_h()
,
gate_identity_each()
,
gate_identity()
,
gate_is_wap_pow()
,
gate_iswap()
,
gate_i()
,
gate_matrix()
,
gate_operation()
,
gate_phase_gradient()
,
gate_phased_is_wap_pow()
,
gate_phased_xz()
,
gate_quantum_fourier_transform()
,
gate_riswap()
,
gate_rx()
,
gate_ry()
,
gate_single_qubit()
,
gate_swap_pow()
,
gate_swap()
,
gate_s()
,
gate_tagged_opertaion()
,
gate_three_qubit_diagonal()
,
gate_three_qubit()
,
gate_toffoli()
,
gate_t()
,
gate_wait()
,
gate_x_pow()
,
gate_xx_pow()
,
gate_xx()
,
gate_x()
,
gate_y_pow()
,
gate_yy_pow()
,
gate_yy()
,
gate_y()
,
gate_z_pow()
,
gate_zz_pow()
,
gate_zz()
,
gate_z()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.