ExtractRaschMirt | R Documentation |
Extract item difficulties and item difficulty variance estimates for Rasch items from a fitted mirt object for one or two groups
ExtractRaschMirt(mod, focal = NULL, reference = NULL)
mod |
A mirt object containing the fit of unidimensional model. |
focal |
Character. See description of 'reference'. |
reference |
Character. If mod is of class MultipleGroupClass and parameters from precisely two groups are to be extracted, 'reference' should coincide with the label for the reference group. If mod is of class MultipleGroupClass and parameers from all groups are to be extracted, 'reference' should be NULL. If mod is SingleGroupClass, it is ignored. |
If mod contains any itemtype == "Rasch", a list with the item parameters and the estimate covariances (if available). If mod is SingleGroupClass, the list contains the item parameters as a matrix and the covariances as a list. If mod is MultipleGroupClass, the list contains the item parameters and covariances for the focal and reference groups only.
library(mirt)
data <- expand.table(LSAT7)
(mod1 <- mirt(data, model = 1, itemtype = "Rasch", SE = TRUE))
(DFIT:::ExtractRaschMirt(mod1))
# From mirt's multipleGroup
set.seed(12345)
a <- matrix(abs(rnorm(15, 1, .3)), ncol = 1)
d <- matrix(rnorm(15, 0, .7), ncol = 1)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype,
mu = .1, sigma = matrix(1.5))
dataset3 <- simdata(a, d, N, itemtype,
mu = -.1, sigma = matrix(1.5))
dataset4 <- simdata(a, d, N, itemtype,
mu = 0, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2, dataset3, dataset4)
group <- rep(paste0('D', 1:4), each = N)
(mod2 <- multipleGroup(dat, 1, itemtype = 'Rasch', group = group, SE = TRUE))
(DFIT:::ExtractRaschMirt(mod2, focal = "D1", reference = "D4"))
(DFIT:::ExtractRaschMirt(mod2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.