mlho.it | R Documentation |
iterative modeling with MLHO
mlho.it(
dbmart,
labels = labeldt,
dems = NULL,
test.sample = 30,
MSMR.binarize = FALSE,
MSMR.sparsity = 0.005,
MSMR.jmi = TRUE,
MSMR.topn = 200,
mlearn.save.model = FALSE,
mlearn.note = "mlho_phewas run",
mlearn.aoi = "demo",
mlearn.cv = "cv",
mlearn.nfold = 5,
multicore = FALSE,
preProc = TRUE,
iterations = 5
)
dbmart |
dbmart table |
labels |
should be the labeldt table |
dems |
table containing the demographic variables |
test.sample |
put 20 if you want to use 20 percent for testing and 80 percent for training |
MSMR.binarize |
MSMR.lite parameter |
MSMR.sparsity |
MSMR.lite parameter |
MSMR.jmi |
MSMR.lite parameter |
MSMR.topn |
MSMR.lite parameter |
mlearn.save.model |
mlearn parameter |
mlearn.note |
mlearn parameter |
mlearn.aoi |
mlearn parameter |
mlearn.cv |
mlearn parameter |
mlearn.nfold |
mlearn parameter |
multicore |
if you want to parallelize the process |
preProc |
preprocessig on the train data or not |
iterations |
number of iterations you want. recommended at least 5. needs to be numeric |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.