coexpr: Identification of gene pairs coexpressed in at least one of...

coexprR Documentation

Identification of gene pairs coexpressed in at least one of two conditions

Description

This function identifies gene pairs coexpressed in at least one of two conditions.

Usage

coexpr(exprs.1, exprs.2, r.method = c("pearson", "spearman")[1],
  q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr",
  "none")[1], rth = 0.5, qth = 0.1)

Arguments

exprs.1

a SummarizedExperiment, data frame or matrix for condition 1, with gene IDs as rownames and sample IDs as column names.

exprs.2

a SummarizedExperiment, data frame or matrix for condition 2, with gene IDs as rownames and sample IDs as column names.

r.method

a character string specifying the method to be used to calculate correlation coefficients. It is passed to the cor function of the WGCNA package.

q.method

a character string specifying the method for adjusting p values. It is passed to the p.adjust function of the stats package.

rth

the cutoff of absolute value of correlation coefficients; must be within [0,1].

qth

the cutoff of q-value (adjusted p value); must be within [0,1].

Value

a data frame containing gene pairs that are coexpressed in at least one of the conditions with the criteria that absolute value of correlation coefficient is greater than rth and q value less than qth. It has the following columns:

Gene.1

Gene ID

Gene.2

Gene ID

cor.1

correlation coefficients under condition 1

cor.2

correlation coefficients under condition 2

cor.diff

difference between correlation coefficients under condition 2 and condition 1

p.1

p value under null hypothesis that correlation coefficient under condition 1 equals to zero

p.2

p value under null hypothesis that correlation coefficient under condition 2 equals to zero

p.diffcor

p value under null hypothesis that difference between two correlation coefficients under two conditions equals to zero using Fisher's r-to-Z transformation

q.1

adjusted p value under null hypothesis that correlation coefficient under condition 1 equals to zero

q.2

adjusted p value under null hypothesis that correlation coefficient under condition 2 equals to zero

q.diffcor

adjusted p value under null hypothesis that the difference between two correlation coefficients under two conditions equals to zero using Fisher's r-to-Z transformation

Examples

data(gse4158part)
allowWGCNAThreads()
res=coexpr(exprs.1 = exprs.1, exprs.2 = exprs.2, r.method = "spearman")
#The result is a data frames.
str(res)

hidelab/diffcoexp documentation built on April 20, 2024, 4:30 p.m.