R/StoEmmix_inline_with_polyak_exc.R

library(Rcpp)
library(RcppArmadillo)
library(inline)

stoEMMIXpol_src <- '
using namespace arma;
using namespace Rcpp;

// Load all of the function inputs
mat data_a = as<mat>(data_r);
rowvec pi_hold = as<rowvec>(pi_r);
mat mean_hold = as<mat>(mean_r);
cube cov_hold = as<cube>(cov_r);
int maxit_a = as<int>(maxit_r);
double rate_a = as<double>(rate_r);
double base_a = as<double>(base_r);
int batch_a = as<int>(batch_r);
int groups_a = as<int>(groups_r);

// Memory control
rowvec pi_a = pi_hold;
mat mean_a = mean_hold;
cube cov_a = cov_hold;

// Get necessary dimensional elements
int obs_a = data_a.n_cols;
int dim_a = data_a.n_rows;

// Initialize the Gaussian mixture model object
gmm_full model;
model.reset(dim_a,groups_a);

// Set the model parameters
model.set_params(mean_a, cov_a, pi_a);

// Initialize the sufficient statistics
rowvec T1 = batch_a*pi_a;
mat T2 = zeros<mat>(dim_a,groups_a);
for (int gg = 0; gg < groups_a; gg++) {
  T2.col(gg) = mean_a.col(gg)*pi_a(gg);
}
cube T3 = zeros<cube>(dim_a,dim_a,groups_a);
for (int gg = 0; gg < groups_a; gg++) {
  T3.slice(gg) = T1(gg)*cov_a.slice(gg) + T2.col(gg)*trans(T2.col(gg))/T1(gg);
}

// Initialize gain
double gain = 1;

// Create polyak variables
rowvec pol_pi = pi_a;
mat pol_mean = mean_a;
cube pol_cov = cov_a;

// Initialize tau matrix
mat tau = zeros<mat>(groups_a,batch_a);

// Begin loop
for (int count = 0; count < maxit_a; count++) {
  
  // Update gain function
  gain = base_a*pow(count+1,-rate_a);
  
  // Construct a sample from the data
  IntegerVector seq_c = sample(obs_a,batch_a,0);
  uvec seq_a = as<uvec>(seq_c) - 1;
  mat subdata_a = data_a.cols(seq_a);
  
  // Compute the tau scores for the subsample
  for (int gg = 0; gg < groups_a; gg++) {
    tau.row(gg) = pi_a(gg)*exp(model.log_p(subdata_a,gg));
  }
  for (int nn = 0; nn < batch_a; nn++) {
    tau.col(nn) = tau.col(nn)/sum(tau.col(nn));
  }
  
  // Compute the new value of T1
  T1 = (1-gain)*T1 + gain*trans(sum(tau,1));
  
  // Compute the new value of T2
  for (int gg = 0; gg < groups_a; gg++) {
    T2.col(gg) = (1-gain)*T2.col(gg);
    for (int nn = 0; nn < batch_a; nn++) {
      T2.col(gg) = T2.col(gg) + gain*tau(gg,nn)*subdata_a.col(nn);
    }
  }
  
  // Compute the new value of T3
  for (int gg = 0; gg < groups_a; gg++) {
    T3.slice(gg) = (1-gain)*T3.slice(gg);
    for (int nn = 0; nn < batch_a; nn++) {
      T3.slice(gg) = T3.slice(gg) + gain*tau(gg,nn)*subdata_a.col(nn)*trans(subdata_a.col(nn));
    }
  }
  
  // Convert back to regular parameters
  pi_a = T1/batch_a;
  for (int gg = 0; gg < groups_a; gg++) {
    mean_a.col(gg) = T2.col(gg)/T1(gg);
    cov_a.slice(gg) = (T3.slice(gg)-T2.col(gg)*trans(T2.col(gg))/T1(gg))/T1(gg);
  }
  
  // Compute polyak averages
  pol_pi = pol_pi*count/(count+1) + pi_a/(count+1);
  pol_mean = pol_mean*count/(count+1) + mean_a/(count+1);
  pol_cov = pol_cov*count/(count+1) + cov_a/(count+1);
  
  // Reset the model parameters
  model.set_hefts(pi_a);
  model.set_means(mean_a);
  model.set_fcovs(cov_a);
  
}

// Initialize the Gaussian mixture model object with polyak components
gmm_full model_pol;
model_pol.reset(dim_a,groups_a);

// Set to polyak model parameters
model_pol.set_hefts(pol_pi);
model_pol.set_means(pol_mean);
model_pol.set_fcovs(pol_cov);

return Rcpp::List::create(
  Rcpp::Named("reg_log-likelihood")=model.sum_log_p(data_a),
  Rcpp::Named("reg_proportions")=model.hefts,
  Rcpp::Named("reg_means")=model.means,
  Rcpp::Named("reg_covariances")=model.fcovs,
  Rcpp::Named("pol_log-likelihood")=model_pol.sum_log_p(data_a),
  Rcpp::Named("pol_proportions")=model_pol.hefts,
  Rcpp::Named("pol_means")=model_pol.means,
  Rcpp::Named("pol_covariances")=model_pol.fcovs);
'

stoEMMIX_pol <- cxxfunction(signature(data_r='numeric',
                                  pi_r='numeric',
                                  mean_r='numeric',
                                  cov_r='numeric',
                                  maxit_r='integer',
                                  groups_r='integer',
                                  rate_r='numeric',
                                  base_r='numeric',
                                  batch_r='integer'),
                        stoEMMIXpol_src, plugin = 'RcppArmadillo')

# Sto <- stoEMMIX_pol(t(Data), msEst$parameters$pro, msEst$parameters$mean,
#          msEst$parameters$variance$sigma,
#          1000,5,0.6,1,1000)
hiendn/StoEMMIX documentation built on Sept. 9, 2019, 6:07 a.m.