biom.qc | R Documentation |
This function performs quality controls and data transformations that are needed for MiVT.
biom.qc(biom, kingdom = "Bacteria", lib.size.cut.off = 1000, mean.prop.cut.off = 0, rem.tax.com = c("", "gut metagenome", "mouse gut metagenome", "metagenome", "NANANA"), rem.tax.par = c("uncultured", "incertae", "Incertae", "unclassified", "unidentified", "unknown"))
biom |
A microbiome data in the phyloseq format. sample_data(biom) should contain two binary variables: y (response) and Tr (treatment). See the example data using gen.syn.dat(). |
kingdom |
A microbial kingdom to be analyzed, such as 'Bacteria', 'Archaea', 'Eukaryota' or 'all'. 'all' is for all kingdoms in the taxonomic table (Default: 'Bacteria'). |
lib.size.cut.off |
A minimum total read count for subjects to keep in the microbiome data (Default: 1000). |
mean.prop.cut.off |
A minimum mean proportion for microbial features (OTUs or ASVs) to keep in the microbiome data (Default: 0). |
rem.tax.com |
Remove taxonomic names in the taxonomic table that are completely matched with the specified character strings (Default: c("", "gut metagenome", "mouse gut metagenome", "metagenome", "NANANA")). |
rem.tax.par |
Remove taxonomic names in the taxonomic table that are partially matched with the specified character strings (Default: c("uncultured", "incertae", "Incertae", "unclassified", "unidentified", "unknown")). |
$tax.prop: A list of tables for the proportions of microbial taxa on each taxonomic rank (Phylum, Class, Order, Family, Genus, Species). $otu.tab: A feature (OTU or ASV) table where rows are features and columns are subjects. $tax.tab: A taxonomic table where rows are features (OTUs or ASVs), and columns are seven taxonomic ranks (Kingdom, Phylum, Class, Order, Family, Genus, Species). $sam.dat: A metadata/sample information where rows are subjects and columns are variables. It should contain two binary variables: y (response) and Tr (treatment). $tree: A rooted phylogenetic tree.
Hyunwook Koh
Koh, H. Subgroup identification using virtual twins for human microbiome studies. (Under review).
data(fit)
data(tree)
data(tax.tab)
prop <- fit$pi
disp <- fit$theta
sim.biom <- gen.syn.dat(tree = tree, tax.tab = tax.tab, prop = prop, disp = disp)
sim.biom
qc.out <- biom.qc(biom = sim.biom)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.