README.md

R package: mMeta

Title: Multi-marker meta analysis (mMeta) & Adaptive multi-marker meta-analysis (aMeta)

Version: 1.0

Date: 2021-2-11

Author: Hyunwook Koh

Maintainer: Hyunwook Koh hyunwook.koh@stonybrook.edu

Description: This R package provides facilities for multi-marker meta analysis (mMeta) and adaptive multi-marker meta-analysis (aMeta) which conduct meta-analyses to combine multiple studies throughout multiple related markers.

NeedsCompilation: No

Depends: R(>= 4.0.3)

Imports: forestplot, MASS, vegan

License: GPL-2

URL: https://github.com/hk1785/mMeta

Reference

Troubleshooting Tips

If you have any problems for using this R package, please report in Issues (https://github.com/hk1785/mMeta/issues) or email Hyunwook Koh (hyunwook.koh@stonybrook.edu).

Prerequites

devtools

install.packages("devtools")

forestplot

install.packages("forestplot")

MASS

install.packages("MASS")

vegan

install.packages("vegan")

Installation

library(devtools)
install_github("hk1785/mMeta", force=T)

Manual

This R package includes two core functions, mMeta.aMeta and mMeta.aMeta.plot, and one summary data set, HIV.Sum.Data. Please find the details below.

:mag: mMeta.aMeta

Description

This function conducts the meta-analysis using mMeta and aMeta to combine multiple studies throughout multiple related markers.

Usage

mMeta.aMeta(est, std.err, tau0=FALSE, n.perm=5000, seed=NULL)

Arguments

Values

Pooled estimates, 95% confidence intervals, p-values for each marker and across markers using mMeta, and a p-value across markers using aMeta

References

Example

Import requisite R packages

library(forestplot)
library(MASS)
library(vegan)
library(mMeta)

Import example summary data

data(Sum.Data)
est <- Sum.Data$est
std.err <- Sum.Data$std.err

Fit mMeta and aMeta

out1 <- mMeta.aMeta(est, std.err, seed=123)
out1

Import summary data for 15 HIV studies and 6 alpha-diversity indices

data(HIV.Sum.Data)
est <- HIV.Sum.Data$est
std.err <- HIV.Sum.Data$std.err

Fit mMeta and aMeta

out2 <- mMeta.aMeta(est, std.err, seed=123)
out2

:mag: mMeta.aMeta.plot

Description

This function draws a forest plot for each marker, and across markers using mMeta and aMeta.

Usage

mMeta.aMeta.plot(mMeta.aMeta.out)

Arguments

Values

A forest plot for each marker, and across markers using mMeta and aMeta

References

Example

Import requisite R packages

library(forestplot)
library(MASS)
library(vegan)
library(mMeta)

Import example summary data

data(Sum.Data)
est <- Sum.Data$est
std.err <- Sum.Data$std.err

Fit mMeta and aMeta

out1 <- mMeta.aMeta(est, std.err, seed=123)
out1

Draw a forest plot

mMeta.aMeta.plot(mMeta.aMeta.out=out1)

Import summary data for 15 HIV studies and 6 alpha-diversity indices

data(HIV.Sum.Data)
est <- HIV.Sum.Data$est
std.err <- HIV.Sum.Data$std.err

Fit mMeta and aMeta

out2 <- mMeta.aMeta(est, std.err, seed=123)
out2

Draw a forest plot

mMeta.aMeta.plot(mMeta.aMeta.out=out2)

:mag: HIV.Sum.Data

Description

A list of regression coefficients and their standard errors for the 15 human microbiome studies for the association between HIV status and each of the 6 alpha-diversity indices, Richness (Observed), Shannon, Simpson, PD, PE and PQE.

References

Example

Import requisite R packages

library(mMeta)

Import summary data for 15 HIV studies and 6 alpha-diversity indices

data(HIV.Sum.Data)
est <- HIV.Sum.Data$est # Regression coefficients
std.err <- HIV.Sum.Data$std.err # Standard errors


hk1785/mMeta documentation built on Dec. 20, 2024, 3:27 a.m.