Title: Multi-marker meta analysis (mMeta) & Adaptive multi-marker meta-analysis (aMeta)
Version: 1.0
Date: 2021-2-11
Author: Hyunwook Koh
Maintainer: Hyunwook Koh hyunwook.koh@stonybrook.edu
Description: This R package provides facilities for multi-marker meta analysis (mMeta) and adaptive multi-marker meta-analysis (aMeta) which conduct meta-analyses to combine multiple studies throughout multiple related markers.
NeedsCompilation: No
Depends: R(>= 4.0.3)
Imports: forestplot, MASS, vegan
License: GPL-2
URL: https://github.com/hk1785/mMeta
If you have any problems for using this R package, please report in Issues (https://github.com/hk1785/mMeta/issues) or email Hyunwook Koh (hyunwook.koh@stonybrook.edu).
devtools
install.packages("devtools")
forestplot
install.packages("forestplot")
MASS
install.packages("MASS")
vegan
install.packages("vegan")
library(devtools)
install_github("hk1785/mMeta", force=T)
This R package includes two core functions, mMeta.aMeta and mMeta.aMeta.plot, and one summary data set, HIV.Sum.Data. Please find the details below.
This function conducts the meta-analysis using mMeta and aMeta to combine multiple studies throughout multiple related markers.
mMeta.aMeta(est, std.err, tau0=FALSE, n.perm=5000, seed=NULL)
Pooled estimates, 95% confidence intervals, p-values for each marker and across markers using mMeta, and a p-value across markers using aMeta
Import requisite R packages
library(forestplot)
library(MASS)
library(vegan)
library(mMeta)
Import example summary data
data(Sum.Data)
est <- Sum.Data$est
std.err <- Sum.Data$std.err
Fit mMeta and aMeta
out1 <- mMeta.aMeta(est, std.err, seed=123)
out1
Import summary data for 15 HIV studies and 6 alpha-diversity indices
data(HIV.Sum.Data)
est <- HIV.Sum.Data$est
std.err <- HIV.Sum.Data$std.err
Fit mMeta and aMeta
out2 <- mMeta.aMeta(est, std.err, seed=123)
out2
This function draws a forest plot for each marker, and across markers using mMeta and aMeta.
mMeta.aMeta.plot(mMeta.aMeta.out)
A forest plot for each marker, and across markers using mMeta and aMeta
Import requisite R packages
library(forestplot)
library(MASS)
library(vegan)
library(mMeta)
Import example summary data
data(Sum.Data)
est <- Sum.Data$est
std.err <- Sum.Data$std.err
Fit mMeta and aMeta
out1 <- mMeta.aMeta(est, std.err, seed=123)
out1
Draw a forest plot
mMeta.aMeta.plot(mMeta.aMeta.out=out1)
Import summary data for 15 HIV studies and 6 alpha-diversity indices
data(HIV.Sum.Data)
est <- HIV.Sum.Data$est
std.err <- HIV.Sum.Data$std.err
Fit mMeta and aMeta
out2 <- mMeta.aMeta(est, std.err, seed=123)
out2
Draw a forest plot
mMeta.aMeta.plot(mMeta.aMeta.out=out2)
A list of regression coefficients and their standard errors for the 15 human microbiome studies for the association between HIV status and each of the 6 alpha-diversity indices, Richness (Observed), Shannon, Simpson, PD, PE and PQE.
Import requisite R packages
library(mMeta)
Import summary data for 15 HIV studies and 6 alpha-diversity indices
data(HIV.Sum.Data)
est <- HIV.Sum.Data$est # Regression coefficients
std.err <- HIV.Sum.Data$std.err # Standard errors
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.