View source: R/get-info-from-NIW-belief.R
get_NIW_posterior_predictive | R Documentation |
Get posterior predictive of observations x given the NIW parameters m, S, kappa, and nu. This is the density of a multivariate Student-T distribution \insertCite@see @murphy2012 p. 134MVBeliefUpdatr.
get_NIW_posterior_predictive(
x,
m,
S,
kappa,
nu,
Sigma_noise = NULL,
noise_treatment = if (is.null(Sigma_noise)) "no_noise" else "marginalize",
log = T
)
get_NIW_posterior_predictive.pmap(x, m, S, kappa, nu, ...)
get_posterior_predictive_from_NIW_belief(
x,
model,
noise_treatment = if (is.NIW_ideal_adaptor(model)) {
if
(!is.null(first(model$Sigma_noise)))
"marginalize"
else "no_noise"
}
else "no_noise",
log = T,
category = "category",
category.label = NULL,
wide = FALSE
)
x |
Observation(s). Can be a vector with k elements for a single observation or a matrix with k columns and n rows, in which case each row of the matrix is taken to be one observation. If x is a tibble with k columns or a list of vectors of length k, it is reduced into a matrix with k columns. |
m |
The mean of the multivariate Normal distribution of the category mean mu. Should be a matrix or vector of length k. |
S |
The scatter matrix of the inverse-Wishart distribution over the category covariance matrix Sigma. Should be a square k x k matrix. |
kappa |
The strength of the beliefs over the category mean (pseudocounts). |
nu |
The strength of the beliefs over the category covariance matrix (pseudocounts). |
Sigma_noise |
Optionally, a covariance matrix describing the perceptual noise to be applied while calculating the posterior predictive. (default: 'NULL') |
noise_treatment |
Determines whether perceptual noise is considered during categorization, and how. Can be "no_noise", "sample", or "marginalize". If "no_noise", no noise will be applied to the input, and no noise will be assumed during categorization. If "marginalize", average noise (i.e., no noise) will be added to the stimulus, and 'Sigma_noise' is added to Sigma when calculating the likelihood. This simulates the expected consequences for perceptual noise on categorization *in the limit*, i.e, if the input was categorized infinitely many times. If "sample", then noise is sampled and applied to the input, and 'Sigma_noise' is added to Sigma when calculating the likelihood. This simulates the consequence of perceptual noise *on a particular observation*. If "sample" or "marginalize" are chosen, 'Sigma_noise' must be a covariance matrix of appropriate dimensions. (default: "no_noise" if Sigma_noise is NULL, "marginalize" otherwise). |
log |
Should the log-transformed density be returned ('TRUE')? (default: 'TRUE') |
murphy2012MVBeliefUpdatr
TBD
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.