knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(SBICgraph) library(network) # for visualization # to reset par resetPar <- function() { dev.new() op <- par(no.readonly = TRUE) dev.off() op }
The function comparison
allows for comparison between the true network and the estimated network from the SBIC method.
First we create a simulated data set using the embedded simulate
function within SBIC. The function simulate
generates a data frame, a real network adjacency matrix and a prior network adjacency matrix.
p <- 200 m1 <- 100 m2 <- 30 d <- simulate(n=100, p=p, m1=m1, m2=m2) data<- d$data real<- d$realnetwork priori<- d$priornetwork
We can visualize the networks
prior_net <- network(priori) real_net <- network(real) par(mfrow = c(1,2)) plot(prior_net, main = "Prior network") plot(real_net, main = "Real network") par(resetPar())
We examine some features of both the prior network and the real network
sum(priori[lower.tri(priori)]) sum(priori[lower.tri(priori)])/(p*(p-1)/2) sum(real[lower.tri(real)]) sum(real[lower.tri(real)])/(p*(p-1)/2)
Then we can fit SBIC using one function
lambda<- exp(seq(-10,10, length=30)) # calculating the error rate from the number of edges in the true graph and the number of discordant pairs r1 <- m2/m1 r2 <-m2/(p*(p-1)/2-m1) r <- (r1+r2)/2 model<- sggm(data = data, lambda = lambda, M=priori, prob = r)
Comparing the estimated network to the true and prior network. Our comparison function above calcualtes the Positive selection rate (PSR) and the False positive rate (FDR)
print("Comparing estimated model with the real network") comparison(real = real, estimate = model$networkhat) print("Comparing the prior network with the real network") comparison(real = real, estimate = priori)
We can also compare visualizations
estimated_net <- network(model$networkhat) par(mfrow = c(1,3)) plot(prior_net, main = "Prior Network") plot(real_net, main = "Real Network") plot(estimated_net, main = "Estimated Network") par(resetPar())
The model object also stores all the candidate models generated.
length(model$candidate)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.