knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
In this article, we demonstrate how to set up a leafdown
map with three map levels and show that it is an natural
extension of the two map level case. (More than two map levels is supported from leafdown
version 1.1.)
knitr::include_graphics("../man/figures/app_dach_map.png")
Let's first load the libraries we are going to use for our app. \
library(leafdown) library(leaflet) library(shiny) library(dplyr) library(shinycssloaders) library(shinyjs) library(dplyr) library(raster)
(Note that the shinyjs
package is loaded for some automatic warning messages that the
leafdown
map can return to the user of the shiny app.)
As usual, we first create a list of SpatialPolygonsDataFrames
(spdfs
) for the regions we want to display on our map.
(Further details can be found in the Introduction article.)
list (spdfs_list) │ └───spdf (spdf of first map level) │ └───spdf (spdf of second map level) │ └───spdf (spdf of third map level)
ger0 <- readRDS("../inst/extdata/ger0-005.RDS") ger1 <- readRDS("../inst/extdata/ger1-005.RDS") ger2 <- readRDS("../inst/extdata/ger2-005.RDS") aut0 <- readRDS("../inst/extdata/a0-005.RDS") aut1 <- readRDS("../inst/extdata/a1-005.RDS") aut2 <- readRDS("../inst/extdata/a2-005.RDS") ch0 <- readRDS("../inst/extdata/ch0-005.RDS") ch1 <- readRDS("../inst/extdata/ch1-005.RDS") ch2 <- readRDS("../inst/extdata/ch2-005.RDS")
# Germany ger0 <- raster::getData(country = "Germany", level = 0) ger1 <- raster::getData(country = "Germany", level = 1) ger2 <- raster::getData(country = "Germany", level = 2) # Austria a0 <- raster::getData(country = "Austria", level = 0) a1 <- raster::getData(country = "Austria", level = 1) a2 <- raster::getData(country = "Austria", level = 2) # Switzerland ch0 <- raster::getData(country = "Switzerland", level = 0) ch1 <- raster::getData(country = "Switzerland", level = 1) ch2 <- raster::getData(country = "Switzerland", level = 2)
spdfs_list <- list(rbind(aut0, ch0, ger0), rbind(aut1, ch1, ger1), rbind(aut2, ch2, ger2))
For this app, we simply generate random target values y
.
set.seed(20220106) # Simulate data data_sim_y_level_3 <- spdfs_list[[3]]@data data_sim_y_level_3$y <- round(rnorm(nrow(data_sim_y_level_3), 1e2, sd = 5e2), 0) data_sim_y_level_2 <- data_sim_y_level_3 %>% group_by(NAME_0, NAME_1) %>% summarise(y = sum(y)) data_sim_y_level_1 <- data_sim_y_level_2 %>% group_by(NAME_0) %>% summarise(y = sum(y)) # Assign map levels data_sim_y_level_3$level <- 3 data_sim_y_level_2$level <- 2 data_sim_y_level_1$level <- 1 # Assign area names data_sim_y_level_3$area <- data_sim_y_level_3$NAME_2 data_sim_y_level_2$area <- data_sim_y_level_2$NAME_1 data_sim_y_level_1$area <- data_sim_y_level_1$NAME_0 # Combine data of map levels data_sim_y <- rbind( data_sim_y_level_3[, c("area", "y", "level")], data_sim_y_level_2[, c("area", "y", "level")], data_sim_y_level_1[, c("area", "y", "level")] ) head(data_sim_y)
In order for a leafdown
map to know which shapes of a lower map level belong to the shapes in the upper map level, we
need to specify how the data of the spdfs
of different map levels need to be joined. \newline
This is defined by the join_map_levels_by
argument, which is a named vector of length length(spdfs_list) - 1
, whereby
The name of an element specifies the join column in the respective upper map level and the actual element the join column of the lower map level.
Let's have a look at the data of our the spdfs
in spdf_list
:
head(spdfs_list[[1]]@data)
head(spdfs_list[[2]]@data[, c("GID_0", "NAME_0", "GID_1", "NAME_1")])
In this example, map levels 1 and 2 can be joined by their column "GID_0". So the name of first element is "GID_0" (the respective column name of the first map level) and the first element is also "GID_0" (the respective column name of the first map level):
head(spdfs_list[[3]]@data[, c("GID_0", "NAME_0", "GID_1", "NAME_1", "GID_2", "NAME_2")])
We see, that map levels 2 and 3 can be joined by their column "GID_1".
This translates into the following join_map_levels_by
argument:
my_leafdown <- Leafdown$new( spdfs_list, "leafdown", input, join_map_levels_by = c("GID_0" = "GID_0", "GID_1" = "GID_1") )
library(leafdown) library(leaflet) library(shiny) library(dplyr) library(shinycssloaders) library(shinyjs) library(dplyr) library(raster) # Germany ger0 <- raster::getData(country = "Germany", level = 0) ger1 <- raster::getData(country = "Germany", level = 1) ger2 <- raster::getData(country = "Germany", level = 2) # Austria a0 <- raster::getData(country = "Austria", level = 0) a1 <- raster::getData(country = "Austria", level = 1) a2 <- raster::getData(country = "Austria", level = 2) # Switzerland ch0 <- raster::getData(country = "Switzerland", level = 0) ch1 <- raster::getData(country = "Switzerland", level = 1) ch2 <- raster::getData(country = "Switzerland", level = 2) # load the shapes for the three levels spdfs_list <- list(rbind(aut0, ch0, ger0), rbind(aut1, ch1, ger1), rbind(aut2, ch2, ger2)) # Simulate some data set.seed(20220106) data_sim_y_level_3 <- spdfs_list[[3]]@data data_sim_y_level_3$y <- rnorm(nrow(data_sim_y_level_3), 1e2, sd = 5e2) data_sim_y_level_2 <- data_sim_y_level_3 %>% group_by(NAME_0, NAME_1) %>% summarise(y = sum(y)) data_sim_y_level_1 <- data_sim_y_level_2 %>% group_by(NAME_0) %>% summarise(y = sum(y)) data_sim_y_level_3$level <- 3 data_sim_y_level_2$level <- 2 data_sim_y_level_1$level <- 1 data_sim_y_level_3$area <- data_sim_y_level_3$NAME_2 data_sim_y_level_2$area <- data_sim_y_level_2$NAME_1 data_sim_y_level_1$area <- data_sim_y_level_1$NAME_0 data_sim_y <- rbind( data_sim_y_level_3[, c("area", "y", "level")], data_sim_y_level_2[, c("area", "y", "level")], data_sim_y_level_1[, c("area", "y", "level")] ) data_sim_y$y <- round(data_sim_y$y, 0)
ui <- fluidPage( mainPanel( # set the background of the map-container to be white tags$head( tags$style(HTML(".leaflet-container { background: #fff; height: 100%}")), # workaround for the NA in leaflet legend see https://github.com/rstudio/leaflet/issues/615 tags$style(HTML(".leaflet-control div:last-child {clear: both;}")) ), # we need shinyjs for the leafdown map useShinyjs(), fluidRow( # the two buttons used for drilling actionButton("drill_down", "Drill Down"), actionButton("drill_up", "Drill Up"), # the actual map element withSpinner(leafletOutput("leafdown", height = 800), type = 8) ) ) )
# Little helper function for hover labels create_labels <- function(data, map_level) { labels <- sprintf( "<strong>%s</strong><br/>%g</sup>", data[, paste0("NAME_", map_level - 1)], data$y ) labels %>% lapply(htmltools::HTML) }
server <- function(input, output) { # create leafdown object my_leafdown <- Leafdown$new( spdfs_list, "leafdown", input, join_map_levels_by = c("GID_0" = "GID_0", "GID_1" = "GID_1") ) rv <- reactiveValues() rv$update_leafdown <- 0 # observers for the drilling buttons observeEvent(input$drill_down, { my_leafdown$drill_down() rv$update_leafdown <- rv$update_leafdown + 1 }) observeEvent(input$drill_up, { my_leafdown$drill_up() rv$update_leafdown <- rv$update_leafdown + 1 }) data <- reactive({ req(rv$update_leafdown) meta_data <- my_leafdown$curr_data curr_map_level <- my_leafdown$curr_map_level data_curr_map_level <- data_sim_y[data_sim_y$level == curr_map_level, ] join_col_lhs <- paste0("NAME_", curr_map_level - 1) data <- meta_data %>% left_join(data_curr_map_level, by = setNames("area", join_col_lhs)) # add the data back to the leafdown object my_leafdown$add_data(data) data }) # this is where the leafdown magic happens output$leafdown <- renderLeaflet({ req(spdfs_list) req(data) data <- data() labels <- create_labels(data, my_leafdown$curr_map_level) # draw the leafdown object my_leafdown$draw_leafdown( fillColor = ~leaflet::colorNumeric("Greens", data$y)(data$y), weight = 3, fillOpacity = 1, color = "grey", label = labels ) }) }
shinyApp(ui, server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.