Weekly Surveillance Summary of U.S. COVID-19 Activity
The U.S. Centers for Disease Control provides weekly summary and interpretation of key indicators that have been adapted to track the COVID-19 pandemic in the United States. Tools are provided to retrive data from both COVIDView (https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html) and COVID-NET (https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html).
The following functions are implemented:
about
: Display information about the data sourceage_groups
: Return age groups used in the surveillanceavailable_seasons
: Show available seasonsclinical_labs
: Retrieve U.S. Clinical Laboratories Reporting
SARS-CoV-2 Test Results to CDClaboratory_confirmed_hospitalizations
: Retrieve
Laboratory-Confirmed COVID-19-Associated Hospitalizationsmmwr_week_to_date
: Convert an MMWR year+week or year+week+day to a
Date objectmmwr_week
: Convert a Date to an MMWR day+week+yearmmwr_weekday
: Convert a Date to an MMWR weekdaymmwrid_map
: MMWR ID to Calendar Mappingsmortality_surveillance_data
: Retrieve NCHS Mortality Surveillance
Datanssp_er_visits_national
: Retrieve National Syndromic Surveillance
Program (NSSP): Emergency Department Visits Percentage of Visits for
COVID-19-Like Illness (CLI) or Influenza-like Illness (ILI)nssp_er_visits_regional
: Retrieve Regional Syndromic Surveillance
Program (NSSP): Emergency Department Visits Percentage of Visits for
COVID-19-Like Illness (CLI) or Influenza-like Illness (ILI)provisional_death_counts
: Retrieve Provisional Death Counts for
Coronavirus Disease (COVID-19)public_health_labs_national
: Retrieve National Surveillance of
U.S. State and Local Public Health Laboratories Reporting to CDCpublic_health_labs_regional
: Retrieve Regional Surveillance of
U.S. State and Local Public Health Laboratories Reporting to CDCsurveillance_areas
: Show network & network catchmentsinstall.packages("cdccovidview", repos = c("https://cinc.rud.is", "https://cloud.r-project.org/"))
# or
remotes::install_git("https://git.rud.is/hrbrmstr/cdccovidview.git")
# or
remotes::install_git("https://git.sr.ht/~hrbrmstr/cdccovidview")
# or
remotes::install_gitlab("hrbrmstr/cdccovidview")
# or
remotes::install_bitbucket("hrbrmstr/cdccovidview")
# or
remotes::install_github("hrbrmstr/cdccovidview")
NOTE: To use the ‘remotes’ install options you will need to have the {remotes} package installed.
library(cdccovidview)
# current version
packageVersion("cdccovidview")
## [1] '0.1.1'
library(cdccovidview)
library(hrbrthemes)
library(tidyverse)
hosp <- laboratory_confirmed_hospitalizations()
hosp
## # A tibble: 4,590 x 8
## catchment network year mmwr_year mmwr_week age_category cumulative_rate weekly_rate
## <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Entire Network COVID-NET 2020 2020 10 0-4 yr 0 0
## 2 Entire Network COVID-NET 2020 2020 11 0-4 yr 0 0
## 3 Entire Network COVID-NET 2020 2020 12 0-4 yr 0 0
## 4 Entire Network COVID-NET 2020 2020 13 0-4 yr 0.3 0.3
## 5 Entire Network COVID-NET 2020 2020 14 0-4 yr 0.6 0.3
## 6 Entire Network COVID-NET 2020 2020 15 0-4 yr NA NA
## 7 Entire Network COVID-NET 2020 2020 16 0-4 yr NA NA
## 8 Entire Network COVID-NET 2020 2020 17 0-4 yr NA NA
## 9 Entire Network COVID-NET 2020 2020 18 0-4 yr NA NA
## 10 Entire Network COVID-NET 2020 2020 19 0-4 yr NA NA
## # … with 4,580 more rows
c(
"0-4 yr", "5-17 yr", "18-49 yr", "50-64 yr", "65+ yr", "65-74 yr", "75-84 yr", "85+"
) -> age_f
mutate(hosp, start = mmwr_week_to_date(mmwr_year, mmwr_week)) %>%
filter(!is.na(weekly_rate)) %>%
filter(catchment == "Entire Network") %>%
select(start, network, age_category, weekly_rate) %>%
filter(age_category != "Overall") %>%
mutate(age_category = factor(age_category, levels = age_f)) %>%
ggplot() +
geom_line(
aes(start, weekly_rate)
) +
scale_x_date(
date_breaks = "2 weeks", date_labels = "%b\n%d"
) +
facet_grid(network~age_category) +
labs(
x = NULL, y = "Rates per 100,000 pop",
title = "COVID-NET Weekly Rates by Network and Age Group",
caption = sprintf("Source: COVID-NET: COVID-19-Associated Hospitalization Surveillance Network, Centers for Disease Control and Prevention.\n<https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html>; Accessed on %s", Sys.Date())
) +
theme_ipsum_es(grid="XY")
head(clinical_labs())
## week num_labs tested tested_pos pct_pos region source
## 1 202011 26 2785 182 0.065 National Clinical Labs
## 2 202012 41 18494 1149 0.062 National Clinical Labs
## 3 202013 50 37390 2966 0.079 National Clinical Labs
## 4 202014 37 36468 2798 0.077 National Clinical Labs
head(public_health_labs_national())
## week num_labs tested tested_pos pct_pos age_group region source
## 1 202010 73 8049 945 0.117 Overall National Public Health Labs
## 2 202011 79 32072 3292 0.103 Overall National Public Health Labs
## 3 202012 80 63369 6494 0.103 Overall National Public Health Labs
## 4 202013 79 56443 9529 0.169 Overall National Public Health Labs
## 5 202014 75 65917 12177 0.185 Overall National Public Health Labs
## 6 202010 73 212 9 0.043 0-4 yr National Public Health Labs
head(public_health_labs_regional())
## week num_labs tested tested_pos pct_pos region source
## 1 202010 8 619 46 0.074 Region 1 Public Health Labs
## 2 202011 17 3208 194 0.061 Region 1 Public Health Labs
## 3 202012 18 9608 732 0.076 Region 1 Public Health Labs
## 4 202013 16 4625 700 0.151 Region 1 Public Health Labs
## 5 202014 15 6123 1611 0.263 Region 1 Public Health Labs
## 6 202010 5 1381 193 0.140 Region 2 Public Health Labs
head(nssp_er_visits_national())
## week num_fac total_ed_visits visits pct_visits visit_type region source year
## 1 40 3255 2146776 19503 0.009 ili National Emergency Departments 2019
## 2 41 3249 2106999 20457 0.010 ili National Emergency Departments 2019
## 3 42 3256 2101358 22515 0.011 ili National Emergency Departments 2019
## 4 43 3254 2122427 23776 0.011 ili National Emergency Departments 2019
## 5 44 3295 2087335 25466 0.012 ili National Emergency Departments 2019
## 6 45 3315 2137854 29948 0.014 ili National Emergency Departments 2019
head(nssp_er_visits_regional())
## week num_fac total_ed_visits visits pct_visits visit_type region source year
## 1 41 202 130377 814 0.006 ili Region 1 Emergency Departments 2019
## 2 42 202 132385 912 0.007 ili Region 1 Emergency Departments 2019
## 3 43 202 131866 883 0.007 ili Region 1 Emergency Departments 2019
## 4 44 203 128256 888 0.007 ili Region 1 Emergency Departments 2019
## 5 45 203 127466 979 0.008 ili Region 1 Emergency Departments 2019
## 6 46 202 125306 1188 0.009 ili Region 1 Emergency Departments 2019
head(mortality_surveillance_data())
## year week total_deaths deaths pct_deaths cause region source
## 1 2019 40 52452 0 0 COVID-19 National NCHS
## 2 2019 41 52860 0 0 COVID-19 National NCHS
## 3 2019 42 54129 0 0 COVID-19 National NCHS
## 4 2019 43 53914 0 0 COVID-19 National NCHS
## 5 2019 44 53980 0 0 COVID-19 National NCHS
## 6 2019 45 55468 0 0 COVID-19 National NCHS
pd <- provisional_death_counts()
head(pd$by_week)
## week covid_deaths total_deaths percent_expected_deaths pneumonia_deaths pneumonia_and_covid_deaths
## 2 2020-02-01 0 56402 0.95 3618 0
## 3 2020-02-08 0 56737 0.95 3601 0
## 4 2020-02-15 0 55273 0.94 3580 0
## 5 2020-02-22 0 54859 0.94 3427 0
## 6 2020-02-29 5 54513 0.95 3464 3
## 7 2020-03-07 18 53801 0.93 3552 11
## all_influenza_deaths_j09_j11
## 2 452
## 3 483
## 4 489
## 5 502
## 6 573
## 7 555
head(pd$by_age)
## age_group covid_deaths total_deaths percent_expected_deaths pneumonia_deaths pneumonia_and_covid_deaths
## 12 All ages 4984 511424 0.89 36423 2341
## 13 Under 1 yr 0 2727 0.65 19 0
## 14 1-4 yr 1 552 0.76 27 1
## 15 5-14 yr 1 809 0.73 26 0
## 16 15-24 yr 6 4638 0.81 87 2
## 17 25-34 yr 46 9624 0.86 257 21
## all_influenza_deaths_j09_j11
## 12 4541
## 13 9
## 14 26
## 15 34
## 16 35
## 17 106
head(pd$by_state)
## state covid_deaths total_deaths percent_expected_deaths pneumonia_deaths pneumonia_and_covid_deaths
## 25 Alabama 14 9220 0.87 539 4
## 26 Alaska 1 627 0.75 31 1
## 27 Arizona 26 11862 0.97 748 13
## 28 Arkansas 3 5938 0.92 372 2
## 29 California 175 52505 0.94 4170 96
## 30 Colorado 62 7787 0.98 493 33
## all_influenza_deaths_j09_j11
## 25 75
## 26 3
## 27 95
## 28 62
## 29 511
## 30 77
head(pd$by_sex)
## sex covid_deaths total_deaths percent_expected_deaths pneumonia_deaths pneumonia_and_covid_deaths
## 79 Male 2993 262727 0.90 19129 1374
## 80 Female 1991 248679 0.89 17294 967
## 81 Unknown 0 18 0.82 0 0
## all_influenza_deaths_j09_j11
## 79 2262
## 80 2279
## 81 0
| Lang | # Files | (%) | LoC | (%) | Blank lines | (%) | # Lines | (%) | | :--- | -------: | ---: | --: | --: | ----------: | --: | -------: | --: | | R | 18 | 0.95 | 433 | 0.9 | 145 | 0.8 | 173 | 0.8 | | Rmd | 1 | 0.05 | 47 | 0.1 | 36 | 0.2 | 44 | 0.2 |
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.