predict-methods | R Documentation |
Predict data using PCA model
## S3 method for class 'pcaRes'
predict(object, newdata, pcs = nP(object), pre = TRUE,
post = TRUE, ...)
## S4 method for signature 'pcaRes'
predict(object, newdata, pcs = nP(object),
pre = TRUE, post = TRUE, ...)
object |
|
newdata |
|
pcs |
|
pre |
pre-process |
post |
unpre-process the final data (add the center back etc) |
... |
Not passed on anywhere, included for S3 consistency. |
This function extracts the predict values from a pcaRes object for
the PCA methods SVD, Nipals, PPCA and BPCA. Newdata is first
centered if the PCA model was and then scores (T
) and data
(X
) is 'predicted' according to :
\hat{T}=X_{new}P
\hat{X}_{new}=\hat{T}P'
. Missing values are
set to zero before matrix multiplication to achieve NIPALS like
treatment of missing values.
A list with the following components:
scores |
The predicted scores |
x |
The predicted data |
Henning Redestig
data(iris)
hidden <- sample(nrow(iris), 50)
pcIr <- pca(iris[-hidden,1:4])
pcFull <- pca(iris[,1:4])
irisHat <- predict(pcIr, iris[hidden,1:4])
cor(irisHat$scores[,1], scores(pcFull)[hidden,1])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.