knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 8, warning = FALSE, message = FALSE )
This vignette showcases the functions used to derive the roughness and anisotropy exponents for a collection of tiles over a landscape.
First, we perform all the steps from this vignette.
library("statisticalRoughness")
First, we load one of the DEM.
rstr <- raster::raster(file.path(system.file("extdata/rasters/", package = "statisticalRoughness"), "gabilan_mesa.tif")) raster_resolution <- 10
Next we create tiles over which we will calculate the roughness and anisotropy exponents.
This is done for simplicity here by using raster::aggregate()
.
tiles <- raster::aggregate(rstr, fact = 100)
Then, get_zeta_df()
basically checks, conversions and parallelization to be able to efficiently run get_zeta()
.
It is also possible to directly to pass a polygon to get_zeta_df()
.
If passing a raster, the conversion from raster to polygons is handled internally.
zeta_df <- get_zeta_df( rstr, tiles, raster_resolution, vertical_accuracy = 1.87 )
get_zeta_df()
returns a data.frame
with no spatial information.
get_zeta_raster()
takes care to re-introduce the spatial information from the initial raster (here, rstr
) and from the tiles
.
If the .zeta_df
argument is set to NULL
, get_zeta_raster()
first runs get_zeta()
zeta_raster <- get_zeta_raster( rstr, tiles, .zeta_df = zeta_df, raster_resolution, vertical_accuracy = 1.87 )
For example here are the raster layers corresponding to $\alpha_{1,x}$ and $\alpha_{1,y}$.
sp::spplot(zeta_raster[["alpha1.x"]]) sp::spplot(zeta_raster[["alpha1.y"]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.