calcMDCMGeneratorMatrix | R Documentation |
Calculates the infinitesimal Markov generator matrix of the corresponding
(Markovian) default-counting process, used internally by rexmo()
.
calcMDCMGeneratorMatrix(object, d, cscale = 1, ...)
object |
An object deriving from the class BernsteinFunction. |
d |
A positive integer, larger than two, for the dimension. |
cscale |
A positive number for the composite scaling factor. |
... |
pass-through parameter. |
For a given Bernstein function, the Markov generator matrix is defined as the upper triangular matrix with elements
q_{i, j}^\ast
= \binom{d-i}{j-i} \begin{cases}
-\psi{(d-i)} & \text{if } i = j , \\
{(-1)}^{j-i-1} \Delta^{j-i}{ \psi{(d-i)} } & \text{if } i < j , \\
0 & \text{otherwise} .
\end{cases}
The calculation of the Markov generator matrix using this formula is usually not numerically stable. Consequently, the various alternative approaches are used dependent on the class of the Bernstein function.
The (upper triangular) infinitesimal Markov generator of the associated death-counting process is calculated recursively:
q_{0, i}^\ast
= \eta_{i} ,
\quad i \in {\{ 1 , \ldots , d \}} ,
and
q_{i+1, j+1}^\ast
= \frac{d-j}{d-i} q_{i,j}^\ast + \frac{j+1-i}{d-i} q_{i, j+1}^\ast ,
\quad 0 \leq i < j \leq d .
rexmo()
Other Bernstein function generics:
calcExShockArrivalIntensities()
,
calcExShockSizeArrivalIntensities()
,
calcIterativeDifference()
,
calcShockArrivalIntensities()
,
calcValue()
,
getDefaultMethodString()
,
getLevyDensity()
,
getStieltjesDensity()
bf <- AlphaStableBernsteinFunction(alpha = 0.7)
calcMDCMGeneratorMatrix(bf, 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.