library(bootstrap) data=scor n=nrow(data) sigma=cov(data)*(n-1)/n lamb=eigen(sigma)$values theta.hat=lamb[1]/sum(lamb) print (theta.hat) #compute the jackknife replicates, leave-one-out estimates theta.jack <- numeric(n) for (i in 1:n){ d=data[-i,] m=n-1 sigma=cov(d)*(m-1)/m lamb=eigen(sigma)$values theta.jack[i]=lamb[1]/sum(lamb) } bias=(n - 1) * (mean(theta.jack) - theta.hat) print(mean(theta.jack)) print(bias) #jackknife estimate of bias se= sqrt((n-1) *mean((theta.jack - mean(theta.jack))^2)) print(se)
library(DAAG) attach(ironslag) a <- seq(10, 40, .1) #sequence for plotting fits L1 <- lm(magnetic ~ chemical) plot(chemical, magnetic, main="Linear", pch=16) yhat1 <- L1$coef[1] + L1$coef[2] * a lines(a, yhat1, lwd=2) L2 <- lm(magnetic ~ chemical + I(chemical^2)) plot(chemical, magnetic, main="Quadratic", pch=16) yhat2 <- L2$coef[1] + L2$coef[2] * a + L2$coef[3] * a^2 lines(a, yhat2, lwd=2) L3 <- lm(log(magnetic) ~ chemical) plot(chemical, magnetic, main="Exponential", pch=16) logyhat3 <- L3$coef[1] + L3$coef[2] * a yhat3 <- exp(logyhat3) lines(a, yhat3, lwd=2) L4 <- lm(magnetic ~ chemical+I(chemical^2)+I(chemical^3)) yhat4 <- L4$coef[1] + L4$coef[2] * a+ L4$coef[3] * a^2+ L4$coef[4] * a^3 plot(chemical, magnetic, main="cubic polynomial", pch=16) lines(a, yhat4, lwd=2) n <- length(magnetic) #in DAAG ironslag e1 <- e2 <- e3 <- e4 <- numeric(n) for (k in 1:n) { y <- magnetic[-k] x <- chemical[-k] J1 <- lm(y ~ x) yhat1 <- J1$coef[1] + J1$coef[2] * chemical[k] e1[k] <- magnetic[k] - yhat1 J2 <- lm(y ~ x + I(x^2)) yhat2 <- J2$coef[1] + J2$coef[2] * chemical[k]+ J2$coef[3] * chemical[k]^2 e2[k] <- magnetic[k] -yhat2 J3 <- lm(log(y) ~ x) logyhat3 <- J3$coef[1] + J3$coef[2] * chemical[k] yhat3 <- exp(logyhat3) e3[k] <- magnetic[k] -yhat3 J4 <- lm(y~ x+I(x^2)+I(x^3)) yhat4 <- J4$coef[1] + J4$coef[2] * chemical[k]+ J4$coef[3] * chemical[k]^2+J4$coef[4] * chemical[k]^3 e4[k] <- magnetic[k] - yhat4 } c(mean(e1^2), mean(e2^2), mean(e3^2), mean(e4^2)) plot(L4$fit, L4$res) abline(0, 0) qqnorm(L4$res) qqline(L4$res) summary(L1) summary(L2) summary(L3) summary(L4) detach(ironslag)
From the cross validation method, the quadratic model is selected. So is from the adjusted $R^2$.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.