#' Calculate prediction from a \code{other} object.
#'
#' @param object a fitted \code{other} object.
#' @param newdata a design matrix of all the \code{p} main effects of some new observations of which predictions are to be made.
#' @param ... additional argument (not used here, only for S3 generic/method consistency)
#' @return The prediction of \code{newdata} by the cv.sprinter fit \code{object}.
#' @examples
#' n <- 100
#' p <- 200
#' x <- matrix(rnorm(n * p), n, p)
#' y <- x[, 1] + 2 * x[, 2] - 3 * x[, 1] * x[, 2] + rnorm(n)
#' mod <- cv.sprinter(x = x, y = y)
#' fitted <- predict(mod, newdata = x)
#'
#' @export
predict.other <- function(object, newdata, ...) {
# input check
stopifnot(ncol(newdata) == object$p)
fitted_step1 <- rep(0, nrow(newdata))
idx <- object$compact[, 1:2, drop = FALSE]
# selected indices for main effects
idxm <- idx[idx[, 1] == 0, 2]
# selected index pairs for interactions
idxi <- idx[idx[, 1] != 0, , drop = FALSE]
# need to standardize the main effects to construct interactions
xm <- myscale(newdata)
if(nrow(idxi) == 1)
xint <- matrix(xm[, idxi[, 1]] * xm[, idxi[, 2]], ncol = 1)
else
xint <- xm[, idxi[, 1]] * xm[, idxi[, 2]]
x <- cbind(xm[, idxm], xint)
fitted_step3 <- as.numeric(object$a0 + x %*% object$compact[, 3])
return(fitted_step1 + fitted_step3)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.