#' @export
### CITE papers for the VSD and F/G statistics
### Performance Assessment of High-Dimensional Variable Identification
FFunc = function(trueActiveSet,selectedSet) {
p1 = 2*length(intersect(trueActiveSet,selectedSet))
p2 = length(trueActiveSet) + length(selectedSet)
res = p1/p2
return(res)
}
GFunc = function(trueActiveSet,selectedSet) {
p1 = length(intersect(trueActiveSet,selectedSet))
p2 = sqrt(length(trueActiveSet)*length(selectedSet))
res = p1 / p2
return(res)
}
### Variable Selection Diagnostics Measures for High-Dimensional Regression
# VSD+: active variables that were not selected
VSDPlusFunc = function(trueActiveSet,selectedSet) {
res = length(setdiff(trueActiveSet,selectedSet))
return(res)
}
# VSD-: how many inactive variables were selected
VSDMinusFunc = function(trueActiveSet,selectedSet) {
res = length(setdiff(selectedSet,trueActiveSet))
return(res)
}
# VSD: symmetric difference between active and selected sets
VSDFunc = function(trueActiveSet,selectedSet) {
p1 = length(setdiff(trueActiveSet,selectedSet))
p2 = length(setdiff(selectedSet,trueActiveSet))
res = p1 + p2
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.