R2GCTA | R Documentation |
This function implements the genetic complex trait analysis of Yang et al (2010) approach assuming independent covariates and normally distributed errors, with bootstrap variance estimate of Schweiger et al (2016).
R2GCTA(y, x, alpha = c(0.05), niter = 10, bt = NULL, nbt = 1000)
y |
outcome: a vector of length n |
x |
covariates: a matrix of nxp dimension |
alpha |
a vector of type I error for create the confidence intervals. |
niter |
number of iterations |
bt |
variable specifying whether to compute bootstrap variance. Default is FALSE |
nbt |
bootstrap sample size |
The function uses the singular value decomposition for estimation and bootstrap sampling approach for variance estimation under normal random errors.
Estimate of proportion of the explained variation, and bootstrap estimate and variance and confidence intervals if bt=T
Schweiger, R., Kaufman, S., Laaksonen, R., Kleber, M. E., Marz, W., Eskin, E., Rosset, S., Halperin, E. (2016). Fats and ac-curate construction of confidence intervals for heritability. The American Journal of Human Genetics, 98, 1181-1192.
Yang, J., Lee, S. H., Wray, N. R., Goddard, M. E., Visscher, P. (2016). GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. Proceedings of the National Academy of Sciences, 113, E4579-E4580.
## Not run: R2GCTA(y, x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.