knitr::opts_chunk$set(eval = FALSE, collapse = TRUE, comment = "#>" )
We working through this example notebook:
https://planetarycomputer.microsoft.com/dataset/landsat-8-c2-l2#Example-Notebook
library(gdalio)
ext <- c(-122.27508544921875, -121.96128845214844, 47.54687159892238, 47.745787772920934) time_of_interest <- "2020-01-01/2020-12-31" #remotes::install_github("brazil-data-cube/rstac") library(rstac) ## Access the "mobi" collection: catalog <- stac("https://planetarycomputer.microsoft.com/api/stac/v1") x <- catalog %>% stac_search(collections = "landsat-8-c2-l2", bbox = ext[c(1, 3, 2, 4)], datetime = time_of_interest) %>% ext_query("eo:cloud_cover" < "10") %>% post_request() %>% items_sign(sign_fn = sign_planetary_computer()) ## looking for 'Choosing LC08_L2SP_046027_20200908_02_T1 from 2020-09-08 with 0.19% cloud cover' tifs <- grep("tif$", purrr::map_chr(x$features[[1]]$assets, \(xx) xx$href), value = TRUE, ignore.case = TRUE) tif0 <- grep("LC08_L2SP_046027_20200908_.*T1", tifs, value = TRUE) #items_sign(sign_fn = sign_planetary_computer()) library(gdalio) gdalio_set_default_grid(list(extent = ext, dimension = c(512, 512), projection = "OGC:CRS84")) m <- gdalio_matrix(sprintf("/vsicurl/%s", tif0[1]))
random landsat example from Carl
``{r landsat0} s_obj <- stac("https://planetarycomputer.microsoft.com/api/stac/v1/")
it_obj <- s_obj %>% stac_search(collections = "landsat-8-c2-l2", bbox = c(-47.02148, -17.35063, -42.53906, -12.98314)) %>% post_request() %>% items_sign(sign_fn = sign_planetary_computer())
url <- paste0("/vsicurl/", it_obj$features[[1]]$assets$SR_B2$href) data <- terra::rast(url) ## lazy-read ~ 100 MB file over the network, no disk storage data
MOBI ```r library(rstac) it_obj <- stac("https://planetarycomputer.microsoft.com/api/stac/v1") %>% stac_search(collections = "mobi") %>% get_request() %>% items_fetch() %>% # meta for all items, not just first 10 items_sign(sign_fn = sign_planetary_computer()) # API key s_obj <- stac("https://planetarycomputer.microsoft.com/api/stac/v1/") it_obj <- s_obj %>% stac_search(collections = "landsat-8-c2-l2", bbox = c(-47.02148, -17.35063, -42.53906, -12.98314)) %>% get_request() %>% items_sign(sign_fn = sign_planetary_computer()) url <- paste0("/vsicurl/", it_obj$features[[1]]$assets$SR_B2$href) data <- terra::rast(url) ## lazy-read ~ 100 MB file over the network, no disk storage data
Sentinel 2
##https://planetarycomputer.microsoft.com/dataset/sentinel-2-l2a#Example-Notebook ext <- c(-148.56536865234375, -147.44338989257812, 60.80072385643073, 61.18363894915102) time_of_interest <- "2019-06-01/2019-08-01" catalog = Client.open("https://planetarycomputer.microsoft.com/api/stac/v1") #search = catalog.search( # collections=["sentinel-2-l2a"], # intersects=area_of_interest, # datetime=time_of_interest, # query={"eo:cloud_cover": {"lt": 10}}, #) #catalog <- stac("https://planetarycomputer.microsoft.com/api/stac/v1") catalog %>% stac_search( collections="sentinel-2-l2a", bbox=ext[c(1, 3, 2, 4)], datetime=range_old )
NAIP
## goal, convert this python notebook to R #https://planetarycomputer.microsoft.com/dataset/naip#Example-Notebook ## discussion ongoing of Michael Sumner and Carl Boettiger ext <- c(-111.9839859008789, -111.90502166748045, 40.5389819819361, 40.57015381856105) range_old = "2010-01-01/2013-01-01" range_new = "2018-01-01/2020-01-01" library(rstac) ## Access the "mobi" collection: catalog <- stac("https://planetarycomputer.microsoft.com/api/stac/v1") search_old <- catalog %>% stac_search( collections="naip", bbox=ext[c(1, 3, 2, 4)], datetime=range_old ) search_new = catalog %>% stac_search( collections="naip", bbox = ext[c(1, 3, 2, 4)], datetime=range_new ) item_old <- search_old %>% get_request() item_new <- search_new %>% get_request() ## we can use a longlat grid like they do in the notebook (guessing at dim here ...) #gdalio_set_default_grid(list(extent = ext, dimension = c(512, 512), projection = "OGC:CRS84")) ## or, we can get the actual grid spec and use it (but use a lower res overview - there are 5 levels in total, ## $dimXY and then 4 more in $overviews) url_old <- sprintf("/vsicurl/%s", item_old$features[[1]]$assets$image$href) url_new <- sprintf("/vsicurl/%s", item_new$features[[1]]$assets$image$href) ## these can be slow, sometimes it takes a while ## we just getting 'raster info', like gdalinfo output ## (it makes our reprex very slow ... but sometimes it's fast ...) ri_old <- vapour::vapour_raster_info(url_old) ri_new <- vapour::vapour_raster_info(url_new) ## new and old are entirely different, but the warper doesn't care we'll read both to match the second ## lowest overview of old library(gdalio) gdalio_set_default_grid(list(extent = ri_old$extent, dimension = tail(ri_old$overviews, 4)[1:2], projection = ri_old$projection)) ## load code for terra etc formats source(system.file("raster_format/raster_format.codeR", package = "gdalio", mustWork = TRUE)) ## we may get obscure terra error/warnings but that's 'normal' image_old <- gdalio_terra(url_old, bands = 1:3) image_new <- gdalio_terra(url_new, bands = 1:3) op <- par(mfrow = c(1, 2)) library(terra) plotRGB(image_old) plotRGB(image_new) par(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.