knitr::opts_chunk$set(eval = FALSE,
  collapse = TRUE,
  comment = "#>"
)

We working through this example notebook:

https://planetarycomputer.microsoft.com/dataset/landsat-8-c2-l2#Example-Notebook

library(gdalio)
ext <- c(-122.27508544921875, -121.96128845214844, 47.54687159892238, 47.745787772920934)

time_of_interest <- "2020-01-01/2020-12-31"
#remotes::install_github("brazil-data-cube/rstac")
library(rstac)
## Access the "mobi" collection:
catalog <- stac("https://planetarycomputer.microsoft.com/api/stac/v1")

x <- catalog %>% 
  stac_search(collections = "landsat-8-c2-l2", 
              bbox  = ext[c(1, 3, 2, 4)], 
              datetime = time_of_interest) %>%
  ext_query("eo:cloud_cover" < "10") %>% 
  post_request() %>% 
   items_sign(sign_fn = sign_planetary_computer())




## looking for 'Choosing LC08_L2SP_046027_20200908_02_T1 from 2020-09-08 with 0.19% cloud cover'
tifs <- grep("tif$", purrr::map_chr(x$features[[1]]$assets, \(xx) xx$href), value = TRUE, ignore.case = TRUE)

tif0 <- grep("LC08_L2SP_046027_20200908_.*T1", tifs, value = TRUE)
  #items_sign(sign_fn = sign_planetary_computer()) 


library(gdalio)
gdalio_set_default_grid(list(extent = ext, dimension = c(512, 512), projection = "OGC:CRS84"))
m <- gdalio_matrix(sprintf("/vsicurl/%s", tif0[1]))

random landsat example from Carl

``{r landsat0} s_obj <- stac("https://planetarycomputer.microsoft.com/api/stac/v1/")

it_obj <- s_obj %>% stac_search(collections = "landsat-8-c2-l2", bbox = c(-47.02148, -17.35063, -42.53906, -12.98314)) %>% post_request() %>% items_sign(sign_fn = sign_planetary_computer())

url <- paste0("/vsicurl/", it_obj$features[[1]]$assets$SR_B2$href) data <- terra::rast(url) ## lazy-read ~ 100 MB file over the network, no disk storage data

MOBI

```r
library(rstac)
it_obj <- stac("https://planetarycomputer.microsoft.com/api/stac/v1") %>%
  stac_search(collections = "mobi") %>%
  get_request() %>%
  items_fetch() %>% #  meta for all items, not just first 10
  items_sign(sign_fn = sign_planetary_computer()) # API key


s_obj <- stac("https://planetarycomputer.microsoft.com/api/stac/v1/")

it_obj <- s_obj %>% 
  stac_search(collections = "landsat-8-c2-l2",
              bbox = c(-47.02148, -17.35063, -42.53906, -12.98314)) %>%
  get_request() %>%
  items_sign(sign_fn = sign_planetary_computer())


url <- paste0("/vsicurl/", it_obj$features[[1]]$assets$SR_B2$href)
data <- terra::rast(url) ## lazy-read ~ 100 MB file over the network, no disk storage
data

Sentinel 2

##https://planetarycomputer.microsoft.com/dataset/sentinel-2-l2a#Example-Notebook

ext <-  c(-148.56536865234375, -147.44338989257812, 
         60.80072385643073, 61.18363894915102)
time_of_interest <- "2019-06-01/2019-08-01"

catalog = Client.open("https://planetarycomputer.microsoft.com/api/stac/v1")

#search = catalog.search(
#    collections=["sentinel-2-l2a"],
#    intersects=area_of_interest,
#    datetime=time_of_interest,
#    query={"eo:cloud_cover": {"lt": 10}},
#)
#catalog <- stac("https://planetarycomputer.microsoft.com/api/stac/v1")

catalog %>%  stac_search(
    collections="sentinel-2-l2a", bbox=ext[c(1, 3, 2, 4)], datetime=range_old
)       

NAIP

## goal, convert this python notebook to R
#https://planetarycomputer.microsoft.com/dataset/naip#Example-Notebook
## discussion ongoing of Michael Sumner and Carl Boettiger

ext <- c(-111.9839859008789, -111.90502166748045, 40.5389819819361, 40.57015381856105)

range_old = "2010-01-01/2013-01-01"
range_new = "2018-01-01/2020-01-01"
library(rstac)
## Access the "mobi" collection:
catalog <- stac("https://planetarycomputer.microsoft.com/api/stac/v1")

search_old <- catalog %>%  stac_search(
    collections="naip", bbox=ext[c(1, 3, 2, 4)], datetime=range_old
)
search_new = catalog %>% stac_search(
    collections="naip", bbox  = ext[c(1, 3, 2, 4)], datetime=range_new
)

item_old <- search_old %>% get_request()
item_new <- search_new %>% get_request()
## we can use a longlat grid like they do in the notebook (guessing at dim here ...)
#gdalio_set_default_grid(list(extent = ext, dimension = c(512, 512), projection = "OGC:CRS84"))

## or, we can get the actual grid spec and use it (but use a lower res overview - there are 5 levels in total, 
## $dimXY and then 4 more in $overviews)
url_old <- sprintf("/vsicurl/%s", item_old$features[[1]]$assets$image$href)
url_new <- sprintf("/vsicurl/%s", item_new$features[[1]]$assets$image$href)

## these can be slow, sometimes it takes a while
## we just getting 'raster info', like gdalinfo output
## (it makes our reprex very slow ... but sometimes it's fast ...)
ri_old <- vapour::vapour_raster_info(url_old) 
ri_new <- vapour::vapour_raster_info(url_new)


## new and old are entirely different, but the warper doesn't care we'll read both to match the second
## lowest overview of old
library(gdalio)
gdalio_set_default_grid(list(extent = ri_old$extent, 
                             dimension = tail(ri_old$overviews, 4)[1:2], 
                             projection = ri_old$projection))

## load code for terra etc formats
source(system.file("raster_format/raster_format.codeR", package = "gdalio", mustWork = TRUE))
## we may get obscure terra error/warnings but that's 'normal'
image_old <- gdalio_terra(url_old, bands = 1:3)
image_new <- gdalio_terra(url_new, bands = 1:3)
op <- par(mfrow = c(1, 2))
library(terra)

plotRGB(image_old)
plotRGB(image_new)
par(op)


hypertidy/gdalio documentation built on June 15, 2022, 6:45 p.m.