wsm.tau: A function to obtain the most critical measure of performance...

Description Usage Arguments Details References

View source: R/tau.R

Description

A function to obtain the most critical measure of performance in terms of some reference value for a set of indices

Usage

1
wsm.tau(x_ij, w_ij, indices, rho)

Arguments

x_ij

A list of matrices with the standarized measures of performance for each index i and each criteria j

w_ij

A list of matrices with the importance weights for each criteria j

indices

A list of dataframes with the preferences for each alternative

rho

A list with the references values for each index

Details

For each index i, the minimum change in a measure of performance x^h_{ij} for a criteria j that generates a rank reversal is obtained with

τ_{ij}^h = \frac{V_i^{h}-V_i^{ρ}}{w_{ij}x^h_{ij}}

In terms of τ_{ij}^h, the critical indicator value

\mathcal{C}_{ij} = \frac{1}{Δ_{ij}}\times p_{ij}

considers the sensitivity coefficient Δ_{ij}=|τ_{ij}^h|^{Q_1} (first quartile Q_1) and the probability of rank reversals p_{ij}. Moreover, the modified measure of performance is given by

\hat{x}_{ij}^h = {x}_{ij}^h - τ_{ij}^h

References

Sensitivity analysis for household vulnerability assessment: a case of study from Brazil surveys

Triantaphyllou, Evangelos y Sánchez, Alfonso: A Sensitivity Analysis Approach for Some Deterministic Multi-Criteria Decision-Making Methods*. Decision Sciences, 1997, 28(1), pp. 151–194. doi: 10.1111/j.1540-5915.1997.tb01306.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5915.1997.tb01306.x


iaga/ahpsensitivity documentation built on Dec. 20, 2021, 5:57 p.m.