SensitivityJob | R Documentation |
sensi_job()
takes an IDF and EPW as input and returns a SensitivityJob
,
which provides a prototype of conducting sensitivity analysis of EnergyPlus
simulations using Morris method.
SensitivityJob
inherits from eplusr::ParametricJob class, which means
that all methods provided by eplusr::ParametricJob class are also available
for SensitivityJob
class.
The basic workflow is basically:
Adding parameters for sensitivity analysis using
$param()
or
$apply_measure()
.
Check parameter sampled values and generated parametric models using
$samples()
and
$models()
,
respectively.
Run EnergyPlus simulations in parallel using
$run()
,
Gather EnergyPlus simulated data using $report_data() or $tabular_data().
Evaluate parameter sensitivity using
$evaluate()
.
eplusr::EplusGroupJob
-> eplusr::ParametricJob
-> SensitivityJob
param()
Set parameters for sensitivity analysis
SensitivityJob$param( ..., .names = NULL, .r = 12L, .grid_jump = 4L, .scale = TRUE )
...
Lists of paramter definitions. Please see above on the syntax.
.names
A character vector of the parameter names. If NULL
,
the parameter will be named in format theta + number
, where
number
is the index of parameter. Default: NULL
.
.r
An positive integer specifying the number of elementary
effect computed per factor. For details, see
sensitivity::morris. Default: 12
.
.grid_jump
An integer or a vector of integers specifying the
number of levels that are increased/decreased for computing
the elementary effects. Default: 1L
. For details, see
sensitivity::morris.
.scale
If TRUE
, the input design of experiments is scaled
after building the design and before computing the elementary
effects so that all factors vary within the range [0,1].
Default: TRUE
. For details, see sensitivity::morris.
$param()
takes parameter definitions in list format, which is
similar to $set()
in eplusr::Idf class except that each field is
not assigned with a single value, but a numeric vector of length 3,
indicating the minimum value, maximum value and number of levels of
each parameter.
Similar like the way of modifying object field values in eplusr::Idf$set(), there are 3 different ways of defining a parameter in epluspar:
object = list(field = c(min, max, levels))
: Where object
is a
valid object ID or name. Note object ID should be denoted with two
periods ..
, e.g. ..10
indicates the object with ID 10
, It
will set that specific field in that object as one parameter.
.(object, object) := list(field = c(min, max, levels))
: Simimar
like above, but note the use of .()
in the left hand side. You
can put multiple object ID or names in .()
. It will set the field
of all specified objects as one parameter.
class := list(field = c(min, max, levels))
: Note the use of :=
instead of =
. The main difference is that, unlike =
, the left
hand side of :=
should be a valid class name in current
eplusr::Idf. It will set that field of all objects in specified
class as one parameter.
For example, the code block below defines 3 parameters:
Field Fan Total Efficiency
in object named Supply Fan 1
in class
Fan:VariableVolume
class, with minimum, maximum and number of levels
being 0.1, 1.0 and 5, respectively.
Field Thickness
in all objects in class Material
, with minimum, maximum
and number of levels being 0.01, 1.0 and 5, respectively.
Field Conductivity
in all objects in class Material
, with minimum,
maximum and number of levels being 0.1, 0.6 and 10, respectively.
sensi$param( `Supply Fan 1` = list(Fan_Total_Efficiency = c(min = 0.1, max = 1.0, levels = 5)), Material := list(Thickness = c(0.01, 1, 5), Conductivity = c(0.1, 0.6, 10)) )
The modified SensitivityJob
object itself.
\dontrun{ sensi$param( `Supply Fan 1` = list(Fan_Total_Efficiency = c(min = 0.1, max = 1.0, levels = 5)), Material := list(Thickness = c(0.01, 1, 5), Conductivity = c(0.1, 0.6, 10)) ) }
apply_measure()
Set parameters for sensitivity analysis using function
SensitivityJob$apply_measure( measure, ..., .r = 12L, .grid_jump = 4L, .scale = TRUE )
measure
A function that takes an eplusr::Idf and other arguments as input and returns an eplusr::Idf object as output.
...
Arguments except first Idf
argument that are passed
to that measure
.
.r
An positive integer specifying the number of elementary effect computed per factor. For details, see sensitivity::morris.
.grid_jump
An integer or a vector of integers specifying the number of levels that are increased/decreased for computing the elementary effects. For details, see sensitivity::morris.
.scale
If TRUE
, the input design of experiments is scaled
after building the design and before computing the elementary
effects so that all factors vary within the range [0,1].
Default: TRUE
. For details, see sensitivity::morris.
$apply_measure()
works in a similar way as the $apply_measure
in
eplusr::ParametricJob class, with only exception that each argument
supplied in ...
should be a numeric vector of length 3, indicating
the minimum, maximum and number of levels of each parameter.
Basically $apply_measure()
allows to apply a measure to an
eplusr::Idf. A measure here is just a function that takes an
eplusr::Idf object and other arguments as input, and returns a
modified eplusr::Idf object as output.
The names of function parameter will be used as the names of
sensitivity parameter. For example, the equivalent version of
specifying parameters described in
$param()
using $apply_measure()
can be:
# set sensitivity parameters using $apply_measure() # (a) first define a "measure" measure <- function (idf, efficiency, thickness, conducitivy) { idf$set( `Supply Fan 1` = list(Fan_Total_Efficiency = efficiency), Material := list(Thickness = thickness, Conductivity = conducivity) ) idf } # (b) then apply that measure with parameter space definitions as # function arguments sensi$apply_measure(measure, efficiency = c(min = 0.1, max = 1.0, levels = 5), thickness = c(0.01, 1, 5), conductivity = c(0.1, 0.6, 10) )
The modified SensitivityJob
object itself.
\dontrun{ # set sensitivity parameters using $apply_measure() # (a) first define a "measure" measure <- function (idf, efficiency, thickness, conducitivy) { idf$set( `Supply Fan 1` = list(Fan_Total_Efficiency = efficiency), Material := list(Thickness = thickness, Conductivity = conducivity) ) idf } # (b) then apply that measure with parameter space definitions as # function arguments sensi$apply_measure(measure, efficiency = c(min = 0.1, max = 1.0, levels = 5), thickness = c(0.01, 1, 5), conductivity = c(0.1, 0.6, 10) ) }
samples()
Get sampled parameter values
SensitivityJob$samples()
$samples()
returns a data.table::data.table()
which contains the
sampled value for each parameter using Morris
method. The returned data.table has 1 + n
columns, where n
is the
parameter number, while 1
indicates an extra column named case
giving the index of each sample.
A data.table::data.table()
.
\dontrun{ sensi$samples() }
evaluate()
Evaluate sensitivity
SensitivityJob$evaluate(results)
results
A numeric vector. Usually the output of parametric simulations extracted using $report_data() or $tabular_data().
$evaluate()
takes a numeric vector with the same length as total
sample number and returns the a sensitivity::morris()
object. The
statistics of interest (mu, mu* and sigma) are stored as an attribute
named data
and can be retrieved using atrr(sensi$evaluate(), "data")
.
a sensitivity::morris()
object with an extra data
attribute.
\dontrun{ # run parametric simulations sensi$run(wait = TRUE) # status now includes a data.table with detailed information on each simulation sensi$status() # print simulation errors sensi$errors() # extract a target simulation output value for each case to evaluate the # sensitivity results eng <- sen$tabular_data(table_name = "site and source energy", column_name = "energy per total building area", row_name = "total site energy")[, as.numeric(value)] (result <- sensi$evaluate(eng)) # extract sensivitity data attr(result, "data") # plot plot(result) }
print()
Print SensitivityJob
object
SensitivityJob$print()
$print()
shows the core information of this SensitivityJob
,
including the path of IDFs and EPWs and also the simulation job
status.
$print()
is quite useful to get the simulation status, especially
when wait
is FALSE
in $run()
. The job status will be updated
and printed whenever $print()
is called.
The SensitivityJob
object itself, invisibly.
\dontrun{ sen$print() }
Hongyuan Jia
## ------------------------------------------------
## Method `SensitivityJob$param`
## ------------------------------------------------
## Not run:
sensi$param(
`Supply Fan 1` = list(Fan_Total_Efficiency = c(min = 0.1, max = 1.0, levels = 5)),
Material := list(Thickness = c(0.01, 1, 5), Conductivity = c(0.1, 0.6, 10))
)
## End(Not run)
## ------------------------------------------------
## Method `SensitivityJob$apply_measure`
## ------------------------------------------------
## Not run:
# set sensitivity parameters using $apply_measure()
# (a) first define a "measure"
measure <- function (idf, efficiency, thickness, conducitivy) {
idf$set(
`Supply Fan 1` = list(Fan_Total_Efficiency = efficiency),
Material := list(Thickness = thickness, Conductivity = conducivity)
)
idf
}
# (b) then apply that measure with parameter space definitions as
# function arguments
sensi$apply_measure(measure,
efficiency = c(min = 0.1, max = 1.0, levels = 5),
thickness = c(0.01, 1, 5), conductivity = c(0.1, 0.6, 10)
)
## End(Not run)
## ------------------------------------------------
## Method `SensitivityJob$samples`
## ------------------------------------------------
## Not run:
sensi$samples()
## End(Not run)
## ------------------------------------------------
## Method `SensitivityJob$evaluate`
## ------------------------------------------------
## Not run:
# run parametric simulations
sensi$run(wait = TRUE)
# status now includes a data.table with detailed information on each simulation
sensi$status()
# print simulation errors
sensi$errors()
# extract a target simulation output value for each case to evaluate the
# sensitivity results
eng <- sen$tabular_data(table_name = "site and source energy",
column_name = "energy per total building area",
row_name = "total site energy")[, as.numeric(value)]
(result <- sensi$evaluate(eng))
# extract sensivitity data
attr(result, "data")
# plot
plot(result)
## End(Not run)
## ------------------------------------------------
## Method `SensitivityJob$print`
## ------------------------------------------------
## Not run:
sen$print()
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.