CEACT (Cost-Effectiveness Analysis for Clinical Trials) is an R package designed to facilitate the economic evaluation of healthcare interventions in randomized trials. It offers a suite of functions for estimating and visualizing core cost-effectiveness metrics, including:
CEACT is built using a formula-friendly, tidyverse-inspired interface to streamline analysis workflows.
# Install from GitHub using devtools # install.packages("devtools") #devtools::install_github("ielbadisy/CEACT") library(CEACT)
cea()
: Estimate ICER and generate a descriptive cost-effectiveness summary.boot_icer()
: Perform bootstrap-based uncertainty analysis for ICER.plot_ceplane()
: Visualize the cost-effectiveness plane with optional quadrant breakdown.plot_ceac()
: Plot the cost-effectiveness acceptability curve.compute_nmb_ceac()
: Compute expected NMB and probability of cost-effectiveness across WTP values.set.seed(123) control <- data.frame( cost = rnorm(200, 500, 100), effect = rnorm(200, 0.4, 0.05), group = "control" ) treatment <- data.frame( cost = rnorm(200, 550, 100), effect = rnorm(200, 0.3, 0.06), group = "treatment" ) df <- rbind(control, treatment)
res_cea <- CEACT::cea(cost + effect ~ group, data = df, ref = "control") summary(res_cea)
res_boot <- CEACT::boot_icer(cost + effect ~ group, data = df, ref = "control", R = 300) summary(res_boot)
CEACT::plot_ceplane(res_boot, k = 1000)
CEACT::plot_ceac(res_boot, wtp_range = seq(0, 20000, 1000))
nmb_table <- CEACT::compute_nmb_ceac(cost + effect ~ 1, data = df, wtp_range = seq(0, 20000, 1000)) head(nmb_table)
We welcome feedback, issues, and pull requests.
Contribute via the GitHub Issues page.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.