knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of Vizard is to ...
You can install the released version of Vizard from CRAN with:
remotes::install_github("illoRocks/Vizard")
This is a basic example which shows you how to solve a common problem:
library(xgboost) library(tweakr) library(purrr) library(Vizard) # load data --------------------------------------------------------------- data(agaricus.train, package = "xgboost") data(agaricus.test, package = "xgboost") # choose params ----------------------------------------------------------- params <- paramize( list( eta.dbl = c(.01, .4), max_depth.int = c(1, 3), silent = 1, nthread = 2, objective = "binary:logistic", eval_metric = "auc" ), search_len = 10, search_method = "random" ) params <- pmap(params, list) # train-function ---------------------------------------------------------- train_xgb <- function(param, dtrain, dtest, ...) { watchlist <- list(train = dtrain, eval = dtest) xgb.train(param, dtrain, nrounds = 3, watchlist, ...) } # scores per param set ---------------------------------------------------- dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) models <- map(params, train_xgb, dtrain = dtrain, dtest = dtest, early_stopping_rounds = 20) auc_scores <- map_dbl(models, "best_score") # visulize scores --------------------------------------------------------- parameter <- parse_arguments(params, auc_scores) run_app(parameters = parameter)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.