#' FlowSorted.CordBloodCombined.450k
#' @description
#' The FlowSorted.CordBloodCombined.450k package contains data derived from
#' Illumina HumanMethylation450K and Illumina HumanMethylationEPIC DNA
#' methylation microarrays (Gervin K, Salas LA et al. under review), consisting
#' of 263 blood cell references and 26 umbilical cord blood samples, formatted
#' as an RGChannelSet object for integration and normalization using most of
#' the existing Bioconductor packages.
#'
#' This package contains cleaned data from four different umbilical cord blood
#' references similar to the FlowSorted.CordBlood.450K package consisting of
#' data from umbilical cord blood samples generated from healthy newborns.
#' However, when using the cleaned dataset (eliminating potential cell cross
#' contamination) and using the IDOL procedure compared to minfi estimates the
#' cell type composition obtained through FlowSorted.CordBlood.450k package were
#' less precise and biased compared to actual cell counts. Hence, this package
#' consists of appropriate data for deconvolution of umbilical cord blood
#' samples used in for example EWAS relying in both 450K and EPIC technology.
#'
#' Researchers may find this package useful as these samples represent
#' different cellular populations ( T lymphocytes (CD4+ and CD8+), B cells
#' (CD19+), monocytes (CD14+), NK cells (CD56+), Granulocytes, and nucleated
#' red blood cells of cell sorted umbilical cord blood. The estimates were
#' contrasted versus FACS proportions in 22 umbilical samples, and validated
#' using 197 umbilical cord blood samples.
#'
#' These data can be integrated with the minfi Bioconductor package to
#' estimate cellular composition in users' umbilical cord blood Illumina 450K
#' and EPIC samples using a modified version of the algorithm constrained
#' projection/quadratic programming described in Houseman et al. 2012. However,
#' for more accurate estimations we suggests that the user prefers IDOL over
#' minfi automatic estimations, using the function estimateCellCounts2 from
#' the package FlowSorted.Blood.EPIC which allows using customized sets of
#' probes from IDOL (see IDOLOptimizedCpGsCordBlood for an example).
#'
#' @import minfi
#' @import SummarizedExperiment
#' @import IlluminaHumanMethylation450kanno.ilmn12.hg19
#' @import IlluminaHumanMethylationEPICanno.ilm10b4.hg19
#' @import ExperimentHub
#' @importFrom utils data
#' @importFrom utils read.csv
#' @importFrom utils memory.limit
#'
#' @format A class: RGChannelSet, dimensions: 575130 289
#'
#' @seealso
#' References \enumerate{
#' \item K Gervin, LA Salas et al. (2019) \emph{Systematic evaluation and
#' validation of references and library selection methods for deconvolution of
#' cord blood DNA methylation data}. Clin Epigenetics 11,125. doi:
#' 10.1186/s13148-019-0717-y
#' \item KM Bakulski, et al. (2016) \emph{DNA methylation of cord blood
#' cell types: Applications for mixed cell birth studies}. Epigenetics 11:5.
#' doi:10.1080/15592294.2016.1161875.
#' \item K Gervin, et al. (2016) \emph{Cell type specific DNA methylation in
#' cord blood: A 450K-reference data set and cell count-based validation of
#' estimated cell type composition}. Epigenetics 11:690-8.
#' doi:10.1080/15592294.2016.1214782.
#' \item OM de Goede, et al. (2015) \emph{Nucleated red blood cells impact DNA
#' methylation and expression analyses of cord blood hematopoietic cells}.
#' Clin Epigenetics. 7:95. doi:10.1186/s13148-015-0129-6.
#' \item X Lin, et al. (2018) \emph{Cell type-specific DNA methylation in
#' neonatal cord tissue and cord blood: A 850K-reference panel and comparison
#' of cell-types}. Epigenetics. 13:941-58. doi:10.1080/15592294.2018.1522929.
#' \item LA Salas et al. (2018). \emph{An optimized library for
#' reference-based deconvolution of whole-blood biospecimens assayed using the
#' Illumina HumanMethylationEPIC BeadArray}. Genome Biology 19, 64. doi:
#' 10.1186/s13059-018-1448-7.
#' \item DC Koestler et al. (2016). \emph{Improving cell mixture deconvolution
#' by identifying optimal DNA methylation libraries (IDOL)}. BMC bioinformatics.
#' 17, 120. doi: 10.1186/s12859-016-0943-7.
#' \item EA Houseman et al. (2012) \emph{DNA methylation arrays as surrogate
#' measures of cell mixture distribution}. BMC Bioinformatics 13, 86.
#' doi:10.1186/1471-2105-13-86.
#' \item \pkg{minfi} package for tools for estimating cell type
#' composition in blood using these data
#' }
#'
#' @examples
#' FlowSorted.CordBloodCombined.450k
#' #FlowSorted.CordBloodCombined.450k<-
#' #libraryDataGet('FlowSorted.CordBloodCombined.450k')
#' #FlowSorted.CordBloodCombined.450k
#' #table(FlowSorted.CordBloodCombined.450k$CellType)
#' @return RGChannelSet 289 samples
#' @usage
#' FlowSorted.CordBloodCombined.450k
#' #See ?estimateCellCounts2 for cell deconvolution guidelines
"FlowSorted.CordBloodCombined.450k"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.