knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(surveyGEER) library(tidyverse) library(sf) library(leaflet) con <- quick_db_con(schema = "public") adm2<- st_read(con,"ssd_adm2") adm1<- st_read(con,"ssd_adm1") aoi <- adm2 |> filter(adm2_en %in%c("Leer","Mayendit")) |> select(adm2_en) |> rename(geometry="geom") soil_moisture_src <- "NASA_USDA/HSL/SMAP10KM_soil_moisture" soil_moisture <- ee$ImageCollection(soil_moisture_src) sm_tidy<- as_tidyee(soil_moisture) sm_tidy$vrt$time_start |> max() sm_july_mean<-sm_tidy |> filter(date>="2022-07-20",date<="2022-08-02") |> summarise(stat="mean")
moisture_palette <- RColorBrewer::brewer.pal("PuBuGn",n = 5) leaflet(aoi) |> addTiles() |> addPolygons() ssm_viz <- list(min=0 , max= 25.39, palette=moisture_palette, bands="ssm_mean") smp_viz <- list(min=0 , max= 1, palette=moisture_palette, bands="smp_mean") ssma_viz <- list(min=-4 , max= 4, palette=moisture_palette, bands="ssma_mean") susm_viz <- list(min=0 , max= 274.6, palette=moisture_palette, bands="susm_mean") library(tidyverse) aoi_ee <- sf_as_ee(aoi) Map$centerObject(aoi_ee, 8) Map$addLayer(sm_july_mean$ee_ob,ssm_viz,"ssm")+ Map$addLayer(aoi_ee) Map$addLayer(sm_july_mean$ee_ob,smp_viz,"smp_viz")+ Map$addLayer(aoi_ee) Map$addLayer(sm_july_mean$ee_ob,ssma_viz,"ssma_viz")+ Map$addLayer(aoi_ee) Map$addLayer(sm_july_mean$ee_ob,susm_viz,"susm_viz")+ Map$addLayer(aoi_ee)
sm_tidy$ee_ob$first()$projection()$nominalScale()$getInfo() chirps_link <- "UCSB-CHG/CHIRPS/DAILY" chirps_ic<- rgee::ee$ImageCollection(chirps_link)$filterDate("2022-04-01","2022-08-02") chirps_ic$first()$projection()$nominalScale()$getInfo() chirps_tidy <- chirps_ic |> as_tidyee() aoi_rain_time_series <- chirps_tidy |> ee_extract_tidy(aoi,scale=5500) aoi_time_series <- sm_tidy |> filter(date>="2022-04-01",date<="2022-08-02") |> ee_extract_tidy(aoi,scale = 12782) leer_cumulative_rain |> print(n=91) leer_cumulative_rain <- aoi_rain_time_series |> group_by(adm2_en) |> mutate(cum_rain= cumsum(value)) |> filter(adm2_en=="Leer") |> ungroup() mayendit_cumulative_rain <- aoi_rain_time_series |> group_by(adm2_en) |> mutate(cum_rain= cumsum(value)) |> filter(adm2_en=="Mayendit") |> ungroup() aoi_time_series |> filter(parameter=="smp") |> ggplot(aes(x=date, y=value,color=adm2_en))+ geom_line()#+ # geom_line(data= leer_cumulative_rain, # aes(x=date,y=cum_rain/100), # lwd=1,color="#fdae61",alpha=0.75)+ # geom_line(data= mayendit_cumulative_rain, # aes(x=date,y=cum_rain/100), # lwd=1,color="#fdae61",alpha=0.75)+ # scale_y_continuous( # sec.axis= sec_axis(trans = ~.x*100,name = "AWD Cases") # ) aoi_time_series |> filter(parameter=="ssm") |> ggplot(aes(x=date, y=value,color=adm2_en))+ geom_line() aoi_rain_time_series |> ggplot(aes(x=date, y= value))+ geom_line() ee_chirps_spi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.