knitr::opts_chunk$set(echo = FALSE) library(forrescalc) library(dplyr) library(tidyr) library(knitr) library(kableExtra) library(readr) library(ggplot2) path_to_fieldmap <- "C:/3BR/2_VisualisatieDataBR/3MDB_BOSRES_selectieEls/FieldMapData_MDB_BOSRES_selectieEls.accdb" #nolint: line_length_linter
Following the method of Bosch & Partner (2014), selection of forest reserves based on the 3 criteria should be done in 2 steps:
But is it necessary to do this in 2 steps? Is there any difference in selected between doing 2 steps and doing only the last step?
data_dendro <- load_data_dendrometry(path_to_fieldmap) %>% filter(alive_dead == 11) selection_2steps <- data_dendro %>% select_for_das_indicator( grouping_vars = c("forest_reserve", "year", "period") ) %>% inner_join(data_dendro, by = c("forest_reserve", "year", "period")) %>% select_for_das_indicator(grouping_vars = c("plot_id", "year", "period")) %>% inner_join( data_dendro %>% select(plot_id, year, period, forest_reserve) %>% distinct(), by = c("plot_id", "year", "period") ) selection_2steps %>% group_by(forest_reserve, period) %>% summarise(n_plots = n()) %>% ungroup() %>% pivot_wider(names_from = period, names_prefix = "period", values_from = n_plots) %>% kable() %>% kable_styling(full_width = FALSE)
selection_2steps %>% pivot_wider(names_from = period, names_prefix = "period", values_from = year) %>% group_by(forest_reserve) %>% summarise( n_plots_period1 = sum(!is.na(period1) & is.na(period2)), n_plots_period2 = sum(is.na(period1) & !is.na(period2)), n_plots_period12 = sum(!is.na(period1) & !is.na(period2)) ) %>% ungroup() %>% kable() %>% kable_styling(full_width = FALSE)
selection_1step <- data_dendro %>% select_for_das_indicator(grouping_vars = c("plot_id", "year", "period")) %>% inner_join( data_dendro %>% select(plot_id, year, period, forest_reserve) %>% distinct(), by = c("plot_id", "year", "period") ) selection_1step %>% group_by(forest_reserve, period) %>% summarise(n_plots = n()) %>% ungroup() %>% pivot_wider(names_from = period, names_prefix = "period", values_from = n_plots) %>% kable() %>% kable_styling(full_width = FALSE)
selection_1step %>% pivot_wider(names_from = period, names_prefix = "period", values_from = year) %>% group_by(forest_reserve) %>% summarise( n_plots_period1 = sum(!is.na(period1) & is.na(period2)), n_plots_period2 = sum(is.na(period1) & !is.na(period2)), n_plots_period12 = sum(!is.na(period1) & !is.na(period2)) ) %>% ungroup() %>% kable() %>% kable_styling(full_width = FALSE)
data_dendro %>% group_by(forest_reserve, year, period) %>% summarise( dbh_mm_average = mean(.data$dbh_mm) ) %>% ungroup() %>% left_join(data_dendro, by = c("forest_reserve", "year", "period")) %>% left_join( read_csv2(system.file("./extdata/das_tree_groups.csv", package = "forrescalc")), by = "species" ) %>% group_by(forest_reserve, year, period, dbh_mm_average, group) %>% summarise( basal_area_m2_ha = sum(.data$basal_area_alive_m2_ha) ) %>% ungroup() %>% group_by(forest_reserve, year, period, dbh_mm_average) %>% mutate( basal_area_proportion = .data$basal_area_m2_ha / sum(.data$basal_area_m2_ha) ) %>% ungroup() %>% kable()
Heirnisse valt weg doordat de gemiddelde diameter van de bomen te laag is.
Ander aandachtspunt voor dit reservaat (moest het wel meegenomen kunnen worden): de plots zijn niet allemaal in dezelfde winter opgemeten. Zijn er nog reservaten waarbij dit het geval is? Hoe gaan we de berekening in dit geval uitvoeren?
Yearly change of basal area for the studied forest reserves
calc_das_indicator(data_dendro) %>% ggplot(aes(x = forest_reserve, y = d_res)) + geom_bar(stat = "identity")
Yearly proportional change of the basal area for each species group.
calc_das_indicator(data_dendro) %>% ggplot(aes(x = forest_reserve, y = d_group, fill = group)) + geom_bar(stat = "identity", position = "dodge")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.