# expect_that(x, is_true()) expect_true(x)
# expect_that(x, is_false()) expect_false(x)
# expect_that(x, is_a(y)) expect_is(x, y)
# expect_that(x, equals(y)) expect_equal(x, y)
# expect_that(x, is_equivalent_to(y)) expect_equivalent(x, y)
# expect_that(x, is_identical_to(y)) expect_identical(x, y)
# expect_that(x, matches(y)) expect_matches(x, y)
# expect_that(x, prints_text(y)) expect_output(x, y)
# expect_that(x, shows_message(y)) expect_message(x, y)
# expect_that(x, gives_warning(y)) expect_warning(x, y)
# expect_that(x, throws_error(y)) expect_error(x, y)
#test ggbiplot.vegan
# test_that("ggbiplot.vegan input",{
# library(dplyr)
# library(vegan)
# data(varechem)
# data(varespec)
# data(dune)
# data(dune.env)
# dataset <- iris
# dataset$Species2 <- dataset$Species
# datatibble <- tibble::as_tibble(dataset)
# levels(dataset$Species2) <- list(Sgroup = "setosa", Vgroup = c("versicolor", "virginica"))
#
# #test basisfunctionaliteit
# rdaobj <- rda(dataset[,1:4] ~ 1)
# rdaobj2 <- rda(dataset[,1:4] ~ Species, data = iris)
# capobj2 <- capscale(dataset[,1:4] ~ Species, data = iris)
#
# #enkel rda object
# prda <- ggbiplot.vegan(rdaobj, show.labels = FALSE)
# expect_equal(length(prda),9)
# expect_equal(prda$labels$y, "standardized PC2 (5.3% explained var.)")
#
# #enkel cca object
# expect_silent(prda2 <- ggbiplot.vegan(rdaobj2, show.labels = TRUE))
#
# #enkel capscale object
# expect_silent(pcap2 <- ggbiplot.vegan(capobj2, show.labels = TRUE))
#
#
# #rda object + data.frame + groupsvarname + ellgroupsvarname
# expect_silent(p1 <- ggbiplot.vegan(rdaobj, data = dataset, groupsvarname = "Species", ellgroupsvarname = "Species2"))
# expect_silent(p2 <- ggbiplot.vegan(rdaobj, data = datatibble, groupsvarname = "Species", ellgroupsvarname = "Species2"))
#
# pg <- ggplot2::ggplot_build(ggbiplot.vegan(rdaobj, data = dataset, groupsvarname = "Species", ellgroupsvarname = "Species2"))
# expect_equal(length(unique(pg$data[[1]]$group)),3)
# expect_equal(nrow(pg$data[[3]]), 4)
# expect_equal(all(is.na(pg$data[[4]])), F)
# expect_equal(length(unique(pg$data[[4]]$colour)), 3)
#
# #idem maar met een tibble als dataset
# pt <- ggplot2::ggplot_build(ggbiplot.vegan(rdaobj, data = datatibble, groupsvarname = "Species", ellgroupsvarname = "Species2"))
# expect_equal(length(unique(pt$data[[1]]$group)),3)
# expect_equal(nrow(pt$data[[3]]), 4)
# expect_equal(all(is.na(pt$data[[4]]$x)), F)
# expect_equal(length(unique(pt$data[[4]]$colour)), 3)
#
# #check CCA varechem
# myvarechemdesc <- varechem["pH"]
# myvarechemdesc$pHclass <- factor(floor(myvarechemdesc$pH))
# myvarechemdesc$Loco <- factor(sample(c("a","b","d"), nrow(myvarechemdesc) , replace = TRUE))
# vare.cca <- cca(varespec ~ N + P + K + Ca, data = varechem)
# pccavar <- ggbiplot.vegan(vare.cca, var.as.arrows = FALSE) #is niet zoals gewenst
#
# #Check CCA dune
# mod <- cca(dune ~ A1 + Moisture + Management, dune.env)
# pccadune <- ggbiplot.vegan(mod, data = dune.env, show.labels = FALSE,
# var.as.arrows = TRUE, var.axes = TRUE, groupsvarname = "Management")
#
# #Check capscale varechem
# varechem$Humdepth <- factor(round(varechem$Humdepth))
# varechem$labels.cn <- paste("HD:",as.numeric(varechem$Humdepth),sep="")
# varespec.log <- log(varespec + 1)
# mod.cap <- capscale(varespec.log ~ N , data=varechem,distance="bray", add=TRUE)
# pcapvar <- ggbiplot.vegan(mod.cap, choices = 1:2, data = varechem,
# labelsvarname = "labels.cn", scaling = 2,
# var.axes = TRUE, var.as.arrows = FALSE,
# env.axes = c("cn", "bp"), circle = TRUE)
#
# })
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.