namelist_check <- read_vc(namelist_path, root)
Are all codes unique per language?
namelist_check %>% count(code, lang) %>% filter(n > 1) %>% nrow == 0
No lines without names or shortname?
namelist_check %>% filter(is.na(name), is.na(shortname)) %>% nrow == 0
All lines have a value for code and lang?
namelist_check %>% filter(is.na(code) | is.na(lang)) %>% nrow == 0
Language statistics:
namelist_check %>% mutate(name = !is.na(name), shortname = !is.na(shortname)) %>% group_by(lang) %>% summarize(name = sum(name), shortname = sum(shortname))
types_check <- read_vc(types_path, root)
Are all codes unique?
types_check %>% count(type) %>% filter(n > 1) %>% nrow == 0
Are all main types correct?
types_check %>% mutate(type = as.character(type), main_type_2 = ifelse(str_detect(type, "_|\\+"), str_sub(type, end = str_locate(type, "_|\\+") - 1), type) ) %>% filter(main_type != main_type_2) %>% nrow == 0
Which are the frequencies of different combinations of hydrological class, groundwater and flood dependency?
types_check %>% count(hydr_class, groundw_dep, flood_dep)
Inspecting the types
data source, sorted according to the above three variables:
types_check %>% arrange(hydr_class, groundw_dep, flood_dep)
ep_check <- read_vc(ep_path, root)
Are all codes unique?
ep_check %>% count(ep_code) %>% filter(n > 1) %>% nrow == 0
Do ep_classes coincide between ep_code and ep_class?
ep_check %>% mutate(ep_class_c = str_c("ep_class_", str_match(ep_code, "ep_(..).*")[,2] ), ep_class = as.character(ep_class) ) %>% (function(df) { all.equal(df$ep_class_c, df$ep_class) })
Do ep_classes coincide between ep_code and explanation?
ep_check %>% mutate(ep_class_c1 = str_match(ep_code, "ep_(..).*")[,2], ep_class_c2 = str_match(explanation, "ep_(..).*")[,2], ) %>% (function(df) { all.equal(df$ep_class_c1, df$ep_class_c2) })
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.