#' Determine model fit of random forest
#'
#' \code{randomforest_fit} A function to gauge the fit of a model run of a
#' random forest, given parameters. This is a function that is used to fine-tune
#' the random forest when forecasting
#'
#' @param ML_data Dataset that has been prepared to run through randomForest. If
#' originally a time series object, then it has gone through the
#' \code{decompose_ts_object_for_ML} function and the first difference of the
#' column of interest has been taken
#' @param mtry randomForest parameter. The number of variables that are randomly
#' sampled as candidates at each split. Default values are different for
#' classification (sqrt(p)) and regression (p/3) where p is number of
#' variables
#' @param nodesize randomForest parameter. It is the minimum size of terminal
#' nodes. Setting this numebr larger causes smaller trees to be grown and thus
#' takes less time. Default values are different for classification (1) and
#' regression (5)
#' @param ntree randomForest parameter. It is the number of trees to grow. It
#' should not be too small in order to eliminate any possible over-fitting and
#' have each observation used at least a couple of times (randomForest default
#' = 500)
#'
#' @return The mean absolute prediction error (MAPE), in percentage terms, of
#' the model run
#'
#' @importFrom magrittr '%>%'
#' @importFrom randomForest randomForest
#' @import dplyr
#' @importFrom tstools transform_data_to_ts_object
#'
#' @examples
#' ML_data <- tstools::initialize_ts_forecast_data(
#' data = dummy_gasprice,
#' date_col = "year_month",
#' col_of_interest = "gasprice",
#' group_cols = c("state", "oil_company"),
#' xreg_cols = c("spotprice", "gemprice")
#' ) %>%
#' dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
#' tstools::transform_data_to_ts_object() %>%
#' decompose_ts_object_for_ML() %>%
#' dplyr::mutate(col_of_interest = col_of_interest - dplyr::lag(col_of_interest)) %>%
#' dplyr::filter(!is.na(col_of_interest))
#' randomforest_fit(
#' ML_data = ML_data,
#' mtry = 8,
#' nodesize = 5,
#' ntree = 1000
#' )
randomforest_fit <- function(ML_data, mtry, nodesize, ntree) {
# Run randomForest regression
randomforest_init <- randomForest::randomForest(
formula = col_of_interest ~ .,
data = ML_data,
ntree = ntree,
mtry = mtry,
nodesize = nodesize,
importance = T
)
# Exclude col_of_interest for fitting data
fit_data <- ML_data %>%
dplyr::select(-col_of_interest)
# Get fitted values
randomforest_fitted <- predict(randomforest_init, fit_data)
# Calculate MAPE and return
num <- mean(abs(ML_data$col_of_interest - randomforest_fitted))
denom <- mean(abs(ML_data$col_of_interest))
randomforest_mape <- ifelse(num == 0,
0,
100*(num/denom))
# Return mape only
return(randomforest_mape)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.