| kfuns2 | R Documentation | 
k() functions for Edgeworth expansions - two-sampleCalculate k's (cumulant components) for a general version of Edgeworth
expansions (EE) for two-sample t-statistic.
K12two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K13two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K21two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K22two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K23two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K31two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K32two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K41two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K42two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K51two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
K61two(
  A,
  B_x,
  B_y,
  b_x,
  b_y,
  mu_x2,
  mu_x3,
  mu_x4,
  mu_x5,
  mu_x6,
  mu_y2,
  mu_y3,
  mu_y4,
  mu_y5,
  mu_y6
)
A | 
 value of   | 
B_x | 
 value of   | 
B_y | 
 value of   | 
b_x | 
 value of   | 
b_y | 
 value of   | 
mu_x2, mu_x3, mu_x4, mu_x5, mu_x6 | 
 central moments (2 - 6) for a treatment group or their estimates.  | 
mu_y2, mu_y3, mu_y4, mu_y5, mu_y6 | 
 central moments (2 - 6) for a control group or their estimates.  | 
Note that the test statistic for this Edgeworth expansion is defined as 
\sqrt{n}(\bar{X} - \bar{Y})/s and therefore 
X would normally represent a treatment group and Y - control 
group. Variance adjustment r^2 is equal to the output of 
K21two(), unless different variance estimates are used for A, 
numerator of k, and r.
A calculated value for a respective component.
Other k() functions: 
kfuns1
n1 <- 10
n2 <- 8
smp <- c(rgamma(n1, shape = 3), rnorm(n2))
a <- rep(1:0, c(n1, n2))
stats <- smpStats(smp, a, type = "Welch")
vars <- names(stats)  # if want to remove carryover names
names(stats) <- NULL                   
for (j in 1:length(stats)) {
  assign(vars[j], stats[j])
}
K32two(A, B_x, B_y, b_x, b_y, mu_x2, mu_x3, mu_x4, mu_x5, mu_x6, 
                              mu_y2, mu_y3, mu_y4, mu_y5, mu_y6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.