kfuns2 | R Documentation |
k()
functions for Edgeworth expansions - two-sampleCalculate k
's (cumulant components) for a general version of Edgeworth
expansions (EE) for two-sample t-statistic.
K12two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K13two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K21two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K22two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K23two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K31two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K32two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K41two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K42two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K51two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
K61two(
A,
B_x,
B_y,
b_x,
b_y,
mu_x2,
mu_x3,
mu_x4,
mu_x5,
mu_x6,
mu_y2,
mu_y3,
mu_y4,
mu_y5,
mu_y6
)
A |
value of |
B_x |
value of |
B_y |
value of |
b_x |
value of |
b_y |
value of |
mu_x2 , mu_x3 , mu_x4 , mu_x5 , mu_x6 |
central moments (2 - 6) for a treatment group or their estimates. |
mu_y2 , mu_y3 , mu_y4 , mu_y5 , mu_y6 |
central moments (2 - 6) for a control group or their estimates. |
Note that the test statistic for this Edgeworth expansion is defined as
\sqrt{n}(\bar{X} - \bar{Y})/s
and therefore
X
would normally represent a treatment group and Y
- control
group. Variance adjustment r^2
is equal to the output of
K21two()
, unless different variance estimates are used for A
,
numerator of k
, and r
.
A calculated value for a respective component.
Other k()
functions:
kfuns1
n1 <- 10
n2 <- 8
smp <- c(rgamma(n1, shape = 3), rnorm(n2))
a <- rep(1:0, c(n1, n2))
stats <- smpStats(smp, a, type = "Welch")
vars <- names(stats) # if want to remove carryover names
names(stats) <- NULL
for (j in 1:length(stats)) {
assign(vars[j], stats[j])
}
K32two(A, B_x, B_y, b_x, b_y, mu_x2, mu_x3, mu_x4, mu_x5, mu_x6,
mu_y2, mu_y3, mu_y4, mu_y5, mu_y6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.