prxgradcholf: Penalized least-square estimation of Cholesky factor

Description Usage Arguments Details Value

View source: R/prxgradf.R

Description

Solve the following optimization problem

\hat{L} = \arg \min_{L} ||LL^t - Sigma||_F* + ||L||_1,off

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
prxgradcholf(
  X,
  L = diag(ncol(X)),
  eps = 0.01,
  alpha = 0.5,
  maxIter = 100,
  lambda = 0,
  normalize = TRUE
)

cholpathf(
  X,
  lambdas = NULL,
  L = diag(ncol(X)),
  eps = 1e-08,
  maxIter = 1000,
  normalize = TRUE
)

Arguments

X

data from which to obtain the path

L

initial cholesky factor

eps

convergence threshold for the proximal gradient

alpha

line search rate

maxIter

the maximum number of iterations

lambda

penalization coefficient

normalize

logical

lambdas

increasing sequence of lambdas

Details

cholpath returns the path of regularized estimator on a sequence of lambda parameters

Value

a list with the output of the optimization:

* N * L the estimated L matrix * lambda * diff the value of the last relative decrease * objective the value of the objective function * iter number of iterations


irenecrsn/covchol documentation built on June 1, 2020, 3:31 a.m.