knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of ebviz
is to assist authors of a Multiple Regression Poststratification
edited book in creating visualizations that are readable, cohesive, and accessible.
You can install the ebviz
package from GitHub with:
# install.packages("devtools") devtools::install_github("j-effendy/ebviz")
These are basic plot examples of theme_seagull()
and theme_wombat()
using
mtcars
and economics_long
dataset:
library(ebviz) library(ggplot2) library(patchwork) w1 <- ggplot(mtcars, aes(mpg,disp,color=factor(carb))) + geom_point(size=3) + labs(title="Scatter Plot", subtitle = "theme_wombat()", caption = "Data: mtcars") + theme_wombat() w2 <- ggplot(mtcars, aes(factor(carb),fill=factor(carb))) + geom_bar() + scale_y_continuous(expand = c(0,0)) + scale_x_discrete(expand = c(0,0)) + labs(title="Bar Plot", subtitle = "theme_wombat()", caption = "Data: mtcars") + theme_wombat() w3 <- ggplot(economics_long, aes(date, value01, colour = variable)) + geom_line() + scale_y_continuous(expand = c(0,0)) + scale_x_date(expand = c(0,0)) + labs(title = "Line Plot", subtitle = "theme_wombat()", caption = "Data: economics_long") + theme_wombat() s1 <- ggplot(mtcars, aes(mpg,disp,color=factor(carb))) + geom_point(size=3) + labs(title="Scatter Plot", subtitle = "theme_seagull()", caption = "Data: mtcars") + theme_seagull() s2 <- ggplot(mtcars, aes(factor(carb),fill=factor(carb))) + geom_bar() + scale_y_continuous(expand = c(0,0)) + scale_x_discrete(expand = c(0,0)) + labs(title="Bar Plot", subtitle = "theme_seagull()", caption = "Data: mtcars") + theme_seagull() s3 <- ggplot(economics_long, aes(date, value01, colour = variable)) + geom_line() + scale_y_continuous(expand = c(0,0)) + scale_x_date(expand = c(0,0)) + labs(title = "Line Plot", subtitle = "theme_seagull()", caption = "Data: economics_long") + theme_seagull() (s1 + w1) / (s2 + w2) / (s3 + w3)
These are basic plot examples of ebviz
colour palettes using
mtcars
dataset:
library(dataviz) library(ggplot2) library(patchwork) p1 <- ggplot(mtcars, aes(mpg,disp,color=factor(vs))) + geom_point(size=3) + scale_colour_dataviz("quokka") + labs(title="Scatter Plot", subtitle = "Quokka Palette", caption = "Data: mtcars") + theme_wombat() p2 <- ggplot(mtcars, aes(mpg,disp,color=factor(vs))) + geom_point(size=3) + scale_colour_dataviz("quoll") + labs(title="Scatter Plot", subtitle = "Quoll Palette", caption = "Data: mtcars") + theme_wombat() p3 <- ggplot(mtcars, aes(mpg,disp,color=mpg)) + geom_point(size=3) + geom_point(size=3) + scale_colour_dataviz("seal") + labs(title="Scatter Plot", subtitle = "Seal Palette", caption = "Data: mtcars") + theme_wombat() p4 <- ggplot(mtcars, aes(mpg,disp,color=mpg)) + geom_point(size=3) + geom_point(size=3) + scale_colour_dataviz("snake") + labs(title="Scatter Plot", subtitle = "Snake Palette", caption = "Data: mtcars") + theme_wombat() p5 <- ggplot(mtcars, aes(mpg,disp,color=mpg)) + geom_point(size=3) + scale_colour_dataviz("dingo") + labs(title="Scatter Plot", subtitle = "Dingo Palette", caption = "Data: mtcars") + theme_wombat() p6 <- ggplot(mtcars, aes(mpg,disp,color=mpg)) + geom_point(size=3) + scale_colour_dataviz("dolphin") + labs(title="Scatter Plot", subtitle = "Dolphin Palette", caption = "Data: mtcars") + theme_wombat() (p1 + p2) / (p3 + p4) / (p5 + p6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.