#' Base Ricker with time varying productivity
#' @param path (character) path to write .jags file
#' @export
write_jags_model.base_tvp_ld <- function(path){
mod <-
"model{
########################################################################
############################ LATENT PROCESS ############################
########################################################################
# ------------------------------------------
# IN-RIVER-RUN-ABUNDANCE ON THE CHENA AND SALCHA DURING THE INITIAL YEARS #
# ------------------------------------------
for (r in 1:2){
for (y in 1:n_ages){
N_2[y,r] ~ dnorm(mu_N[r], tau_N[r])T(0,)
}
mu_N[r] ~ dunif(1000,15000)
tau_N[r] <- pow(1/sig_N[r], 2)
sig_N[r] ~ dexp(1E-4)
}
# ------------------------------------------
# HARVEST ON THE CHENA AND SALCHA #
# ------------------------------------------
for (r in 1:2){
for (y in 1:n_years){
H_2[y,r] ~ dnorm(mu_2[r], tau_2[r])T(0,N_2[y,r])
}
mu_2[r] ~ dunif(0, 2000)
tau_2[r] <- pow(1/sig_2[r], 2)
sig_2[r] ~ dexp(1E-4)
}
# ------------------------------------------
# SPAWNERS GIVEN IN-RIVER-RUN ABUNDANCE AND HARVEST ON THE CHENA AND SALCHA #
# ------------------------------------------
for (r in 1:2){
for (y in 1:n_years){
S[y,r] <- max(N_2[y,r]-H_2[y,r], 0.0001)
}
}
# ------------------------------------------
# RS PROCESSES
# ------------------------------------------
# --------------
# RICKER RS PROCESS WITH A TIME VARYING PRODUCTIVITY PARAMETER AND A LINEAR CONSTRAINT ON THE PRODUCTIVITY PARAMETER #
for (r in 1:2){
for (y in 1:n_years){
log_R[y,r] ~ dnorm(mu_sr[y,r], tau_w[r])
mu_sr[y,r] <- ifelse(
S[y,r] <= S_crit[y,r],
log(a_0[r]+a_1[r]*(y-1))-log(2*S_crit[y,r])+2*log(S[y,r]),
log((a_0[r]+a_1[r]*(y-1))*(max(S[y,r]-S_crit[y,r], 0.01))*exp(-beta[r]*(max(S[y,r]-S_crit[y,r], 0.01))) + (a_0[r]+a_1[r]*(y-1))/2*S_crit[y,r])
)
alpha[y,r] <- a_0[r]+a_1[r]*(y-1)
log_alpha[y,r] <- log(alpha[y,r])
R[y,r] <- exp(log_R[y,r])
nu[y,r] <- log_R[y,r]-log(alpha[y,r])-log(S[y,r])+beta[r]*S[y,r]
S_crit[y,r] ~ dunif(0, 10000)
}
tau_w[r] <- pow(1/sig_w[r], 2)
sig_w[r] ~ dexp(0.1)
a_0[r] ~ dunif(1, 20)
a_1[r] ~ dunif((1-a_0[r])/(n_years-1), 5)
beta[r] ~ dexp(1E2)
}
# ------------------------------------------
# RETURNERS GIVEN RECRUITS #
# ------------------------------------------
for (r in 1:2){
for (y in (n_ages+1):n_years){
for (a in 1:6){
N_1[y,r,a] <- R[(y-9+a),r]*p[y,r,7-a]
}
N_1_dot[y,r] <- sum(N_1[y,r,1:6])
}
}
# ------------------------------------------
# Age-at-maturity probability vector
# ------------------------------------------
# ----------------
# WITHOUT TIME VARYING AGE-AT-MATURITY #
for (r in 1:2){
for (y in 1:n_years){
p[y,r,1:6] ~ ddirch(gamma[r,1:6]+0.1)
}
}
for (r in 1:2){
for (a in 1:n_ages){
gamma[r,a] ~ dexp(0.1)
}
}
# --------------
# IRRA GIVEN RETURNERS AND MIDDLE YUKON HARVEST #
# --------------
for (r in 1:2){
for (y in (n_ages+1):n_years){
N_2[y,r] <- max(N_1_dot[y,r]-q[y,r]*H_1[y], 0.0001)
}
}
for (r in 1:2){
for (y in 1:n_ages){
q[y,r] ~ dnorm(mu_q[r], tau_q[r])
}
for (y in (n_ages+1):n_years){
q[y,r] ~ dnorm(mu_q[r], tau_q[r])T(0,min(1,N_1_dot[y,r]/H_1[y]))
}
mu_q[r] ~ dunif(0,1)
tau_q[r] <- pow(1/sig_q[r],2)
sig_q[r] ~ dexp(0.001)
}
# --------------
# MIDDLE YUKON HARVEST #
# --------------
for (y in 1:n_years){
H_1[y] ~ dnorm(mu_1, tau_1)T(0,)
}
mu_1 ~ dunif(0, 30000)
tau_1 <- pow(1/sig_1, 2)
sig_1 ~ dexp(1E-5)
#############################################################################
############################ OBSERVATION PROCESS ############################
#############################################################################
for (y in 1:n_years){
# ------------------------------------------
# MARK-RECAPTURE ABUNDANCE ESTIMATES #
# ------------------------------------------
log_N_hat_mr[y, 1] ~ dnorm(log(N_2[y,1]) - delta[y], tau_mr[y,1])
log_N_hat_mr[y, 2] ~ dnorm(log(N_2[y,2]), tau_mr[y,2])
delta[y] ~ dexp(lambda)
for(r in 1:2){
tau_mr[y,r] <- 1/var_mr[y,r]
var_mr[y,r] <- log(pow(mr_cv[y,r], 2)+1)
}
}
lambda ~ dexp(0.01)
for(r in 1:2){
for (y in 1:n_years){
# ------------------------------------------
# TOWER COUNTS #
# ------------------------------------------
log_N_hat_tow[y, r] ~ dnorm(log(N_2[y,r]), tau_tow[y,r])
tau_tow[y,r] <- 1/var_tow[y,r]
var_tow[y,r] <- log(pow(tow_cv[y,r],2)+1)
# ------------------------------------------
# CHENA AND SALCHA HARVEST #
# ------------------------------------------
H_hat_2[y,r] ~ dnorm(H_2[y,r], tau_2_star[y,r])T(0,)
tau_2_star[y,r] <- pow(1/sig_2_star[y,r], 2)
sig_2_star[y,r] <- se_H_hat_2[y,r]
# ------------------------------------------
# MOVEMENT BETWEEN THE MIDDLE YUKON AND THE CHENA AND SALCHA #
# ------------------------------------------
N_hat_q[y,r] ~ dbin(q[y,r], N_hat_t[y])
# ------------------------------------------
# AGE DATA FROM THE CHENA AND SALCHA #
# ------------------------------------------
N_hat_pr[y, r, 1:6] ~ dmulti(p[y,r,1:6], N_hat_pr_dot[y,r])
}
}
# ------------------------------------------
# HARVEST IN THE MIDDLE YUKON #
# ------------------------------------------
for (y in 1:n_years){
H_hat_1[y] ~ dnorm(H_1[y], tau_1_star[y])T(0,)
tau_1_star[y] <- pow(1/sig_1_star[y], 2)
sig_1_star[y] ~ dunif(0, se_H_hat_1[y])
}
############################################################################################
############################ CALCULATING SOME USEFUL STATISTICS ############################
############################################################################################
for (r in 1:2){
for (y in 1:n_years){
# --------------
# TIME VARYING PRODUCTIVITY WITHOUT THE AR(1) TERM #
alpha_prime[y,r] <- alpha[y,r]*exp(pow(sig_w[r], 2)/2)
}
}
for (i in 1:450){
S_star[i] <- 50*i
for (r in 1:2){
for (y in 1:n_years){
R_star[i,y,r] <- ifelse(
S_star[i] <= S_crit[y,r],
alpha_prime[y,r]/(2*S_crit[y,r])*S_star[i]^2,
alpha_prime[y,r]*(max(S_star[i]-S_crit[y,r], 0.01))*exp(-beta[r]*(max(S_star[i]-S_crit[y,r], 0.01))) + alpha_prime[y,r]/2*S_crit[y,r]
)
SY[i,y,r] <- R_star[i,y,r]-S_star[i]
}
}
}
}"
writeLines(mod,con=path)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.