knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(entropy) library(mvtnorm) library(DepGEM) library(tidyverse)
data("data") data
set.seed(191118) gibbs_output <- gibbs(n.iter=13, Y = Y, X = X_jitter, cat = "", burnin_coef = 0.5, sigma_Z_max = 5, sigma_Z_0 = 1, a_Z = 1, b_Z = 1, M_min = 0, M_max = 50, a_M = 1, b_M = .1, a_lambda = .2, b_lambda = .01, lambda_min = .01, lambda_max = .4, lambda_0 = 3, GP = "SE") gibbs_output %>% names # load(file=paste("estimations/save_estimate_",cat,".rdata",sep="")) predictive_output <- predictive(Xs = Xs, X = X_jitter, Z_store = gibbs_output$Z_store, lambda_store = gibbs_output$lambda_store, sigma_Z_store = gibbs_output$sigma_Z_store, M_store = gibbs_output$M_store, d_store = gibbs_output$d_store, D_store = gibbs_output$D_store, by_burn = 2, cat = "") # load(file=paste("estimations/save_pred_",cat,".rdata",sep=""))
plot_diversity_fun(X, Xs, gibbs_output$D_store, predictive_output$D_star, D_data)
The above example was to show you how it works; but is probably insufficient to get the algorithm to converge. Here's a verified example with enough iterations to converge (not run)
gibbs(n.iter=10^3, Y = Y, X = X_jitter, cat = "", burnin_coef = 0.5, sigma_Z_max = 5, sigma_Z_0 = 1, a_Z = 1, b_Z = 1, M_min = 0, M_max = 50, a_M = 1, b_M = .1, a_lambda = .2, b_lambda = .01, lambda_min = .01, lambda_max = .4, lambda_0 = 3, GP = "SE")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.