View source: R/pretty_coefficients.R
| pretty_coefficients | R Documentation | 
Creates a pretty kable of model coefficients including coefficient base levels, type III P.values, and variable importance.
pretty_coefficients(
  model_object,
  relativity_transform = NULL,
  relativity_label = "relativity",
  type_iii = NULL,
  conf.int = FALSE,
  vimethod = "model",
  spline_seperator = NULL,
  significance_level = 0.05,
  return_data = FALSE,
  ...
)
| model_object | Model object to create coefficient table for. Must be of type:  | 
| relativity_transform | String of the function to be applied to the model estimate to calculate the relativity, for example: 'exp(estimate)-1'. Default is for relativity to be excluded from output. | 
| relativity_label | String of label to give to relativity column if you want to change the title to your use case. | 
| type_iii | Type III statistical test to perform. Default is none. Options are 'Wald' or 'LR'. Warning 'LR' can be computationally expensive. Test performed via  | 
| conf.int | Set to TRUE to include confidence intervals in summary table. Warning, can be computationally expensive. | 
| vimethod | Variable importance method to pass to method of  | 
| spline_seperator | Separator to look for to identity a spline. If this input is not null, it is assumed any features with this separator are spline columns. For example an age spline from 0 to 25 you could use: AGE_0_25 and "_". | 
| significance_level | Significance level to P-values by in kable. Defaults to 0.05. | 
| return_data | Set to TRUE to return  | 
| ... | Any additional parameters to be past to   | 
kable if return_data = FALSE. data.frame if return_data = TRUE.
library(dplyr)
library(prettyglm)
data('titanic')
columns_to_factor <- c('Pclass',
                       'Sex',
                       'Cabin',
                       'Embarked',
                       'Cabintype',
                       'Survived')
meanage <- base::mean(titanic$Age, na.rm=TRUE)
titanic  <- titanic  %>%
 dplyr::mutate_at(columns_to_factor, list(~factor(.))) %>%
 dplyr::mutate(Age =base::ifelse(is.na(Age)==TRUE,meanage,Age)) %>%
 dplyr::mutate(Age_0_25 = prettyglm::splineit(Age,0,25),
               Age_25_50 = prettyglm::splineit(Age,25,50),
               Age_50_120 = prettyglm::splineit(Age,50,120)) %>%
 dplyr::mutate(Fare_0_250 = prettyglm::splineit(Fare,0,250),
               Fare_250_600 = prettyglm::splineit(Fare,250,600))
# A simple example
survival_model <- stats::glm(Survived ~
                              Pclass +
                              Sex +
                              Age +
                              Fare +
                              Embarked +
                              SibSp +
                              Parch +
                              Cabintype,
                             data = titanic,
                             family = binomial(link = 'logit'))
pretty_coefficients(survival_model)
# A more complicated example with a spline and different importance method
survival_model3 <- stats::glm(Survived ~
                                        Pclass +
                                        Age_0_25 +
                                        Age_25_50 +
                                        Age_50_120 +
                                        Sex:Fare_0_250 +
                                        Sex:Fare_250_600 +
                                        Embarked +
                                        SibSp +
                                        Parch +
                                        Cabintype,
                              data = titanic,
                              family = binomial(link = 'logit'))
pretty_coefficients(survival_model3,
                    relativity_transform = 'exp(estimate)-1',
                    spline_seperator = '_',
                    vimethod = 'permute',
                    target = 'Survived',
                    metric = "roc_auc",
                    event_level = 'second',
                    pred_wrapper = predict.glm,
                    smaller_is_better = FALSE,
                    train = survival_model3$data, # need to supply training data for vip importance
                    reference_class = 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.