#' The abr1 dataset
#'
#' Real world FIE-MS dataset.
#'
#' FIE-MS data matrices developed from analysis of samples representing a time
#' course of pathogen attack in a model plant species (Brachypodium
#' distachyon). The data was developed in a single batch with all samples
#' randomised using a Thermo LTQ linear ion trap processed using
#' \code{fiems_ltq_main}. Both positive and negative ion mode are given
#' (\code{abr1$pos} and \code{abr1$neg}). To avoid confusions, variable names
#' are given with a letter corresponding to the ionisation mode followed by the
#' actual nominal mass value (e.g. P130 corresponds to the nominal mass 130 in
#' the positive mode).
#'
#' Experimental factors are given in the \code{abr1$fact} data frame: \itemize{
#' \item \code{injorder:} sample injection order \item \code{name:} sample name
#' \item \code{rep:} biological replicate for a given class \item \code{day:}
#' number of days following infection after which the sample has been harvested
#' - Level H corresponds to an healthy plant. \item \code{class:} identical to
#' day except that \code{class=6} when \code{day=H} \item
#' \code{pathcdf,filecdf,name.org,remark:} are generated from profile
#' processing and are kept for traceability purposes. } Factor of interest for
#' classification are contained in \code{abr1$fact$day}. There are 20
#' biological replicates in each class has
#'
#' @name abr1
#' @source The FIEmspro package \url{https://github.com/aberHRML/FIEmspro}
#' @aliases abr1 FIEmspro
#' @docType data
#' @usage data(abr1)
#' @return A list with the following elements: \item{fact}{A data frame
#' containing experimental meta-data.} \item{pos}{A data frame for positive
#' data with 120 observations and 2000 variables.} \item{neg}{A data frame for
#' negative data with 120 observations and 2000 variables.}
#' @author Manfred Beckmann, David Enot and Wanchang Lin
#' @keywords datasets
#' @examples
#'
#' # Load data set
#' data(abr1)
#'
#' # Select data set
#' dat <- abr1$neg
#'
#' # number of observations and variables in the negative mode matrix
#' dim(dat)
#'
#' # names of the variables
#' dimnames(dat)[[2]] %>%
#' head()
#'
#' # print out the experimental factors
#' abr1$fact %>%
#' head()
#'
#' # check out the repartition of class
#' table(abr1$fact$class)
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.