humboldt.plot.contrib | R Documentation |
Plot PCA contribution to environmental space
humboldt.plot.contrib(
contrib = pca.cal$co,
pcx = 1,
pcy = 2,
eigen = pca.cal$eig
)
contrib |
The contribution of the environmental variables included in PCA |
pcx |
An integer that identifies one (of two) principal components used to perform niche quantification and quantitative tests on. Default=1. Both defaults result in the 1st and 2nd PCs being compared. |
pcy |
An integer that identifies the second (of two) principal components used to perform niche quantification and quantitative tests on. Default=2. Both defaults result in the 1st and 2nd PCs being compared. |
eigen |
Eigen values output from ordinations |
Plots the contribution of the environmental variables to the analysis. Typically these are eigen vectors and eigen values in ordinations.
humboldt.sample.spp,humboldt.g2e, humboldt.equivalence.stat, humboldt.background.stat, humboldt.niche.similarity, humboldt.plot.niche,humboldt.doitall
which use or depend on outputs of this function
library(humboldt)
##load environmental variables for all sites of the study area 1 (env1). Column names should be x,y,X1,X2,...,Xn)
env1<-read.delim("env1.txt",h=T,sep="\t")
## load environmental variables for all sites of the study area 2 (env2). Column names should be x,y,X1,X2,...,Xn)
env2<-read.delim("env2.txt",h=T,sep="\t")
## remove NAs and make sure all variables are imported as numbers
env1<-humboldt.scrub.env(env1)
env2<-humboldt.scrub.env(env2)
##load occurrence sites for the species at study area 1 (env1). Column names should be 'sp', 'x','y'
occ.sp1<-na.exclude(read.delim("sp1.txt",h=T,sep="\t"))
##load occurrence sites for the species at study area 2 (env2). Column names should be 'sp', 'x','y'
occ.sp2<-na.exclude(read.delim("sp2.txt",h=T,sep="\t"))
##convert geographic space to espace
zz<-humboldt.g2e(env1=env1, env2=env2, sp1=occ.sp1, sp2=occ.sp2, reduce.env = 2, reductype = "PCA", non.analogous.environments = "NO", env.trim= T, e.var=c(3:21), col.env = e.var, trim.buffer.sp1 = 200, trim.buffer.sp2 = 200, rarefy.dist = 50, rarefy.units="km", env.reso=0.41666669, kern.smooth = 1, R = 100, run.silent = F)
## plot pca contributions
humboldt.plot.contrib(zz$pca.cal$co,zz$pca.cal$eig)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.