You can install MetNormalizer
from
Github.
# Install `MetNormalizer` from GitHub
if(!require(devtools)){
install.packages("devtools")
}
devtools::install_github("jaspershen/MetNormalizer")
We use the demo data in demoData
package to show how to use
MetNormalizer
. Please install it first.
devtools::install_github("jaspershen/demoData")
library(demoData)
library(MetNormalizer)
path <- system.file("MetNormalizer", package = "demoData")
file.copy(from = path, to = ".", overwrite = TRUE, recursive = TRUE)
new.path <- file.path("./MetNormalizer")
MetNormalizer
metNor(
ms1.data.name = "data.csv",
sample.info.name = "sample.info.csv",
minfrac.qc = 0,
minfrac.sample = 0,
optimization = TRUE,
multiple = 5,
threads = 4,
path = new.path
)
All the results will be placed in the folder named as
svr_normalization_result
.
If you have any questions about tidymass
, please don’t hesitate to
email me (shenxt@stanford.edu) or reach out me via the social medias below.
M339, Alway Buidling, Cooper Lane, Palo Alto, CA 94304
If you use MetNormalizer in you publication, please cite this publication:
Xiaotao Shen, Xiaoyun Gong, Yuping Cai, Yuan Guo, Jia Tu, Hao Li, Tao Zhang, Jialin Wang, Fuzhong Xue & Zheng-Jiang Zhu* (Corresponding Author), Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics volume 12, Article number: 89 (2016).
Thanks very much!
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.